首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ultrathin polypyrrole (PPy) films with the thicknesses of 20, 50, and 100 nm were prepared by electropolymerization. Co particles with a charge density in the range of 125–1,250 mC cm?2 were grown on these ultrathin PPy films. Current time transients were used to investigate the electrochemical properties. It was observed that the deposition of Co becomes more difficult as the PPy film gets thicker. The chemical structure of PPy films in the reduced and oxidized forms and a PPy film with Co particles were examined with Fourier transform infrared spectroscopy (FTIR). The characteristic peaks of the oxidized PPy film were observed. The intensity and position of some peaks changed, and new peaks appeared for the reduced PPy film, possibly as a result of undoping of the PPy film. There are further differences in the spectrum of Co on PPy. The morphology of the films was studied by scanning electron microscopy (SEM). It was found that the morphology was affected by both the PPy film thickness and the Co charge density. Magnetic measurements were made by vibrating sample magnetometry (VSM). The magnetic moment of the samples increases with both decreasing PPy film thickness and increasing charge density due to increased Co deposition. For all samples, the easy axis is parallel to the film plane.  相似文献   

3.
采用循环伏安法,在316不锈钢电极表面原位生成聚吡咯-二氧化硅(PPy-SiO2)复合膜。红外光谱分析表明,通过电化学法可以在316不锈钢表面生成PPy-SiO2复合膜。利用扫描电镜考察了PPy与PPy-SiO2膜层形貌,发现相对于PPy膜层,PPy-SiO2膜层有着较为均一的表面状态。分别将316不锈钢、316不锈钢/PPy、316不锈钢/PPy-SiO2浸泡于3.5%(质量分数)Na Cl水溶液中,采用开路电位-时间(OCP-Time)曲线、电化学阻抗谱(EIS)考察了PPy膜层与PPy-SiO2复合膜层对不锈钢的防腐性能,结果表明,浸泡初期,影响膜层防腐性能的主要因素是膜层与不锈钢电极表面的吸附能力,PPy的金属防护效果高于PPy-SiO2;浸泡1 h后,影响膜层防腐性能的主要因素转变为膜层本身抑制水分子渗透的能力,PPy-SiO2的金属防护效果高于PPy。对PPy膜层与PPy-SiO2复合膜层进行了抗阴极剥离实验,结果显示,PPy-SiO2复合膜层具有更高的抗阴极剥离能力。  相似文献   

4.
The interfacial fracture energy of screen‐printed silver nanopaste films is quantitatively measured, and the fundamental adhesion mechanism is investigated. It is found that the interfacial fracture energy at the Ag film/silicon substrate interface is critically affected by the sintering condition. The sintering temperature tunes the interfacial surface morphology of Ag films and the amount of organic residues at the interface. These factors determine the degree of interfacial toughening between the Ag film and the substrate, which directly affects the adhesion properties. The increased surface roughness of the Ag film with sufficient organic residues leads to a larger interfacial toughening at the film/substrate interface, and subsequently to an enhanced interfacial fracture energy of screen‐printed Ag nanopaste films.  相似文献   

5.
运用静电力自组装和原位化学氧化聚合相结合的方法制备了聚吡咯/纳米二氧化钛(PPy/TiO2)复合薄膜, 并进行了紫外-可见光谱分析和原子力显微镜分析. 采用平面叉指电极制备了PPy/TiO2复合薄膜气体传感器, 研究了其在常温下对有毒气体NH3和CO的敏感性. 最后测试了该传感器的温度湿度特性. 结果表明, 该传感器对NH3具有较高的灵敏度, 对CO几乎没有响应. 同时讨论了复合薄膜沉积时间对气敏特性的影响, 实验表明当沉积时间为20min时, 该传感器的NH3敏感特性最好.  相似文献   

6.
7.
8.
Buckling instabilities generate microscale features in thin films in a facile manner. Buckles can form, for example, by heating a metal/polymer film stack on a rigid substrate. Thermal expansion differences of the individual layers generate compressive stress that causes the metal to buckle over the entire surface. The ability to dictate and confine the location of buckle formation can enable patterns with more than one length scale, including hierarchical patterns. Here, sacrificial “ink” patterned on top of the film stack localizes the buckles via two mechanisms. First, stiff inks suppress buckles such that only the non‐inked regions buckle in response to infrared light. The metal in the non‐inked regions absorbs the infrared light and thus gets sufficiently hot to induce buckles. Second, soft inks that absorb light get hot faster than the non‐inked regions and promote buckling when exposed to visible light. The exposed metal in the non‐inked regions reflects the light and thus never get sufficiently hot to induce buckles. This second method works on glass substrates, but not silicon substrates, due to the superior thermal insulation of glass. The patterned ink can be removed, leaving behind hierarchical patterns consisting of regions of buckles among non‐buckled regions.  相似文献   

9.
In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV–visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.  相似文献   

10.
11.
12.
A facile approach to locally concentrate analytes of interest will significantly enhance miniaturized, integrated chemical‐analysis systems. Here, the directed analyte transport and concentration using ≈200 µm‐diameter E‐jet printed chemical potential wells in a polyacrylamide hydrogel is demonstrated. Using a cationic well as the model system, anionic analytes are accumulated into a microscale area with a local concentration enhancement of >50‐fold relative to the surrounding area. By downscaling the diameter of the chemical potential well from a few millimeters to 100s of micrometers, it is found, using both fluorescence and Raman microscopy, that the molecular collection capacity of the well is greatly improved. Additionally, it is shown that molecules can be simultaneously transported and concentrated to arrays of microscale regions using an array of microscale chemical potential wells. This approach enhances many‐fold the limit of detection, enables the formation of microscale potential well arrays with a variety of chemical properties, and provides a novel microscale molecular manipulation technique as an alternative to traditional microfluidic‐based systems.  相似文献   

13.
Polypyrrole Based Microwave Absorbers   总被引:11,自引:0,他引:11  
Reflection of microwave radiations from single layer and two-layer materials is calculated. Microwave absorbing materials are formulated by mixing a commercially available paint or rubber with the conducting polypyrrole (PPy) powder. The reflection loss strongly depends on thickness and complex permittivity of the material. For a single layer material, optimum values of the real part, , and imaginary part, , of the complex permittivity are found by calculations which lead to a minimum reflectivity at a given sample thickness. The ability to readily tailor the conductivity of the PPy powder enables the design of microwave absorbers according to theoretical desired values of and . A paint panel containing 2 wt% of PPy powder with a thickness of 2.5 mm exhibits a reflectivity < – 10 dB (i.e. at least 90% absorption of the incident radiation) over 12 to 18 GHz. Blending and milling during the manufacturing process can destroy the original fibrous shape of PPy aggregates leading to low radiation absorption. In an attempt to achieve a broadband absorber, a two-layer system consisting of a first layer containing PPy powder and a second layer containing carbonyl iron has been fabricated.  相似文献   

14.
Biodegradable materials like chitosan (CH) and methoxy polyethylene glycol (mPEG) are widely being used as drug delivery carriers for various therapeutic applications. In this study, copolymer (CH-g-mPEG) of CH and carboxylic acid terminated mPEG was synthesized by carbodiimide-mediated acid amine reaction. The resultant hydrophilic copolymer was characterized by Fourier transform infrared spectroscopy and 1H NMR studies, revealing its relevant functional bands and proton peaks, respectively. Blank polymeric nanoparticles (B-PNPs) and 5-fluorouracil loaded polymeric nanoparticles (5-FU-PNPs) were formulated by ionic gelation method. Furthermore, folic acid functionalized FA-PNPs and FA-5-FU-PNPs were prepared for folate receptor-targeted drug delivery. FA-5-FU-PNPs were characterized by particle size, zeta potential, and in vitro drug release studies, resulting in 197.7?nm,?+29.9?mv, and sustained drug release of 88% in 24?h, respectively. Cytotoxicity studies were performed for FA-PNPs and FA-5-FU-PNPs in MCF-7 cell line, which exhibited a cell viability of 80 and 41%, respectively. In vitro internalization studies were carried out for 5-FU-PNPs and FA-5-FU-PNPs which demonstrated increased cellular uptake of FA-5-FU-PNPs by receptor-mediated transport. Significant (p?相似文献   

15.
An approach based on rotating ring-disk electrode (RRDE) voltammetry is described for the quantitative, in situ measurement of ion transport between solution and conducting polymer films. The specific composite film studied in this report is polypyrrole/poly(styrenesulfonate) (pPy(+)/pSS(-)). Cation flux in and out of the polymer was obtained from the mass-transport-limited reduction current for the dopant cation(s) measured at the ring during redox cycling of the polymer. Crucial to this method is the use of a supporting electrolyte that is sterically inhibited from passing into the film and the use of dopant ions that adhere to specific electrochemical constraints. With this method it was possible to quantitatively account for all changes in charge compensation in the film by the specific cation(s) involved. Three different cations were explored alone and in paired combinations. Solutions containing mixtures of dopant cations were studied to determine whether the pPy(+)/pSS(-) films exhibit preferential doping. Kinetic factors, likely due to steric differences in the dopant cations, were found to lead to significant preferential doping of the polymer.  相似文献   

16.
Large areas of polypyrrole (PPy) thin films deposited onto inert polymeric substrates are structured by direct laser interference patterning (DLIP). Several square millimeter areas could be produced with one single (10 ns) pulse, at room temperature and atmospheric pressure. Nanometric arrays of lines (>600 nm) or grids of PPy deposited on dielectric polymers polypropilene or polypirrol (PP or PE) are fabricated by DLIP at 355 nm. The period of the lines structures, measured by white light interferometry (WLI), is 3.5 µm. Regular structures are analyzed using scanning electron microscope (SEM) and a focus ion beam (FIB) tomography. It is shown that only the PPy film is structured while the PP or PE substrate remains unaltered. Fourier transform infrared spectroscopy (FTIR) and UV‐vis spectroscopy, permit to ensure that PPy chemical structure remains unaltered after the structuration process. The width of PPy lines can be tailored by controlling the fluence of the laser beam. Contact angle measurement shows that the wettability is affected by the structuring, making the surface more hydrophobic. The structuring technique seems to be suitable for the fabrication of PPy regular structures over various substrates.  相似文献   

17.
聚吡咯纳米复合物作为一种新型材料,有着十分广阔的应用前景。本文介绍了聚吡咯纳米复合材料的最新进展,从聚吡咯纳米复合材料的分类、制备方法及应用领域等几个方面进行了综述,并对聚吡咯复合材料的发展前景进行了展望。  相似文献   

18.
19.
Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues. Potential applications include biphasic reaction vessels, liquid electronics, novel media for the encapsulation of cells and active matter, and dynamic constructs that both alter, and are altered by, their external environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号