首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lack of geographically broad‐scale temperature data has limited our ability to classify stream temperatures and assess the processes affecting them. Continuous data (1 July 2005–30 June 2006) from 90 sites throughout the Great Lakes Basin (GLB) were used to classify and model the thermal regimes of streams in Ontario. Existing and newly developed temperature metrics were used to characterize the data for each site. The 90 sites clustered into three thermal regimes based on maximum weekly maximum temperature (°C) and spring rate of change (°C · d?1). The centroids of regime 1, 2 and 3 had temperatures of 26.4, 28.4, 23.5°C and warming rates of 0.20, 0.12 and 0.10°C · d?1, respectively. There was a regional pattern in the thermal regimes; most sites in the north were regime 1 and most sites in the south were regime 2 but neither regime was limited to those areas. Regime 3 sites were found throughout the study area. Discriminant function analysis indicated that per cent riparian forest, mean annual air temperature, per cent surface water and groundwater discharge potential influenced the thermal regimes at the sites, and demonstrated how variables at three spatial scales influence stream temperatures. This study provides a framework for thermal assessments elsewhere and demonstrates how anthropogenic activities such as riparian deforestation, groundwater withdrawal, stream regulation and climate change will all affect the main drivers of thermal regimes in streams. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper quantifies patterns of discharge and temperature variation in the regulated river Lyon and the adjacent, unregulated river Lochay (Scotland) and assesses the importance of these patterns for benthic invertebrate community structure. Invertebrates were sampled at sites in each catchment in autumn, winter and spring during the 2002–2003 hydrological year. Metrics were used to characterize the discharge and temperature regimes in the period immediately preceding invertebrate sample collection. Metric values were then used in a canonical correspondence analysis (CCA) of the invertebrate sample data, in order to assess the significance of individual metrics and the overall importance of flow and temperature variability for community structure. The variance in the invertebrate data explained by this CCA was compared to that from a CCA using a range of environmental data from the sites (stream‐bed algal cover, channel hydraulic, sedimentary and water quality characteristics). This comparison allowed assessment of the relative importance of environmental variables versus hydrologic and thermal regimes. Invertebrate communities in the Lyon were relatively poor and uneven, with Ephemeroptera, Plecoptera and Coleoptera poorly represented. Distinct site and seasonal clusters were evident in the CCA ordination biplots, with Lyon and Lochay sites separated in dimensions represented by geometric mean sediment size, water temperature and algal cover. The cumulative variance values from ordinations using the discharge and temperature metrics were consistently highest, suggesting that differences in invertebrate communities showed a stronger relation to patterns of discharge and temperature variability than to the broader suite of environmental conditions. Although there were marked thermal differences between sites, temperature metrics appeared no more important than discharge metrics in explaining differences in invertebrate community structure. A number of the temperature and discharge metrics appeared similarly important, suggesting that no one aspect of the hydrothermal regime was any more important than others in helping to understand differences in invertebrate community between the study sites. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We collected fish samples and measured physical habitat characteristics, including summer stream temperatures, at 156 sites in 50 tributary streams in two sampling areas (Upper Fraser and Thompson Rivers) in British Columbia, Canada. Additional watershed characteristics were derived from GIS coverages of watershed, hydrological and climatic variables. Maximum weekly average temperature (MWAT), computed as an index of summer thermal regime, ranged from 10 to 23 °C. High values of MWAT were associated with large, warm, low relief watersheds with a high lake influence. Measures of community similarity suggested that the fish community changed most rapidly through a lower transition zone at an MWAT of about 12 °C and an upper transition zone at an MWAT of about 19 °C. These results were confirmed using existing fisheries inventory data combined with predictions of MWAT from a landscape‐scale regression model for the Thompson River watershed. For headwater sites in the Chilcotin River watershed (which drains into the middle Fraser River), the relative dominance of bull trout versus rainbow trout (based on inventory data) decreased with increasing predicted MWAT although the distinction was not as clear as for the Thompson River sites. The fish communities in these watersheds can be characterized in terms of very cold water (bull trout and some cold water species), cold water (salmonids and sculpins) and cool water (minnows and some cold water salmonids). The two transition zones (ca 12 and 19 °C) can be used to identify thresholds where small changes in stream temperature can be expected to lead to large changes in fish communities. Such clear, quantifiable thresholds are critical components of a management strategy designed to identify and protect vulnerable fish communities in streams where poor land use practices, alone or in combination with climatic change, can lead to changes in stream temperatures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
When forested riparian zones are cleared for agriculture or development, major changes can occur in the stream temperature regime and consequently in ecosystem structure and function. Our main objective was to compare the summer temperature regimes of streams with and without forest canopy cover at multiple sites. The secondary objective was to identify the components of the stream heat budget that had the greatest influence on the stream temperature regime. Paired stream reaches (one forested and one non‐forested or ‘open’) were identified at 11 sites distributed across the USA and Canada. Stream temperature was monitored at the upstream and downstream ends of 80 to 130‐m‐long reaches during summer, and five variables were calculated to describe the stream temperature regime. Overall, compared with forested reaches, open reaches tended to have significantly higher daily mean (mean difference = 0.33 ± 1.1°C) and daily maximum (mean difference = 1.0 ± 1.7°C) temperatures and wider daily ranges (mean difference = 1.1 ± 1.7°C). Mean and maximum daily net heat fluxes in open reaches tended to be greater (or less negative) than those in forested reaches. However, certain sites showed the opposite trends in some variables because of the following: (i) Daily mean and maximum temperatures were biased by differences in inflow temperature between paired reaches and (ii) inputs of cold groundwater exerted a strong influence on temperature. Modelling and regression results suggested that within sites, differences in direct solar radiation were mainly responsible for the observed differences in stream temperature variables at the daily scale. © 2014 The Authors. River Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

5.
The effects of hydrological alterations on thermal regimes due to small water provisioning schemes are poorly understood. We studied the alteration of thermal regimes in a Mediterranean stream, where a weir and a water abstraction have been previously shown to severely affect the flow regime (e.g. frequency and duration of drought) and fish assemblage. Compared to non‐impacted sites, the daily water temperature was more variable downstream of the weir, where water flow was reduced and drying occurred every summer. However, water temperature variation was smaller in a nearby downstream site dominated by effluents from a wastewater treatment plant. In addition, compared to all other sites, the times of the day to reach minimum and maximum water temperatures were markedly different in this site receiving the wastewater plant effluents and occurred earlier in the day in the site below the weir. The relationships between air and water temperatures were tight downstream but became looser and anomalous at the sites affected by water abstraction and effluent inputs. Overall, our results show that water temperature regimes in small streams are abruptly disrupted with water provisioning schemes with unknown consequences for aquatic organisms and ecosystems. Effects may be particularly stressful in Mediterranean‐climate streams, where water is scarce and hydrological alterations pervasive. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This study monitored stream temperatures over two hydrological years at various nested scales within the large, unregulated river Dee catchment (North East Scotland). These scales were (i) the whole catchment (11 sites along main stem Dee); (ii) the tributary (single sites in main tributaries); (iii) the Girnock (five sites in one subcatchment); and (iv) the reach (26 points across single reach). The aim was to characterize the thermal regime of all locations and compare the magnitude of variation between each scale. The controls on this variation were assessed via a multiple linear regression model using Geographic Information System‐derived catchment data. Temperatures were collected at 15‐min resolution and for further analysis and discussion combined to daily means. At the catchment and subcatchment scales, a west to east gradient in mean and minimum temperatures was observed, largely paralleling changes in altitude. Temperature differences between subcatchments were generally greater than between the sites along the main stem of the Dee. Differences between tributaries reflected differences in their morphology and land use. However, some tributaries had similar thermal regimes, despite different catchment and riparian characteristics. Subcatchment differences in thermal regimes of one of the tributaries corresponded to riparian vegetation reduced diurnal variability in sections dominated by broadleaf woodland. Compared with the larger scales, reach differences in thermal regime were small (e.g. mean temperatures of riffle, pool and margin habitats were within 0.3°C). The most noticeable difference was in relation to the point samples within the backwater area, which has a more constant thermal regime, most probably reflecting its groundwater source. The regression analysis indicated that monthly mean temperatures can be predicted well using elevation and catchment area. Forest cover was a significant explanatory variable during the summer months. However, some of the empirical temperature data from the Dee indicate that similar thermal regimes can result from different physical controls and processes that have important implications for the extrapolation of such predictive models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Suitable thermal conditions in streams are necessary for fish and predictions of future climate changes infer that water temperatures may regularly exceed tolerable ranges for key species. Riparian woodland is considered as a possible management tool for moderating future thermal conditions in streams for the benefit of fish communities. The spatial and temporal variation of stream water temperature was therefore investigated over 3 years in lowland rivers in the New Forest (southern England) to establish the suitability of the thermal regime for fish in relation to riparian shade in a warm water system. Riparian shade was found to have a marked influence on stream water temperature, particularly in terms of moderating diel temperature variation and limiting the number of days per year that maximum temperatures exceeded published thermal thresholds for brown trout. Expansion of riparian woodland offers potential to prevent water temperature exceeding incipient lethal limits for brown trout and other fish species. A relatively low level of shade (20–40%) was found to be effective in keeping summer temperatures below the incipient lethal limit for brown trout, but ca. 80% shade generally prevented water temperatures exceeding the range reported for optimum growth of brown trout. Higher levels of shade are likely to be necessary to protect temperature‐sensitive species from climate warming. © Crown copyright 2010.  相似文献   

8.
Water temperature was continuously recorded during the ice-free season between June/July and October/November at 90 sites with lentic and lotic stream sources distributed throughout the Nicola River watershed (British Columbia, Canada) in 1999, 2000, and 2001. The eight lentic-sourced stream temperature monitoring sites were located in two adjacent watersheds. The headwaters and riparian areas around the wetland outlet of the treatment watershed were harvested during the overwinter period between 1999 and 2000. Areas around and downstream of the headwater wetland outlet in the control watershed were not harvested. Reducing riparian shade by harvesting activities increased maximum stream temperatures in the treatment watershed by up to 1–2°C relative to the control watershed. Because of the general downstream cooling trends in lentic-sourced headwater streams, riparian harvesting activities in these regions have a reduced thermal impact relative to similar harvesting alongside lotic-sourced headwater streams, whose maximum stream temperatures may warm by up to 8°C following harvesting. The downstream influence of elevated maximum stream temperatures from riparian harvesting of lentic-sourced headwater streams appears to be localized, but persists for at least 2 years following harvesting. Both lentic-sourced treatment and control streams in the current study relaxed towards baseline equilibrium temperature estimated by the lotic-sourced watershed trend within several hundred meters of downstream travel distance, with cooling rates proportional to the distance from expected thermal equilibrium. Due to the heating in wetland-sourced stream reaches adjacent to riparian harvesting, the regions downstream of treatment areas cool more rapidly than similar regions in control watersheds as the stream attempts to achieve thermal equilibrium.  相似文献   

9.
Anthropogenic factors such as dam construction and hydropower generation can dramatically alter the flow regime of rivers and may impact growth of aquatic organisms. Using incremental growth techniques, annual growth of Alabama bass Micropterus henshalli and redeye bass M. coosae in the Tallapoosa River, Alabama, USA, was evaluated in response to variation in flow regime. Fish were collected from the Tallapoosa River above Harris Dam (unregulated site) and at two sites downstream of the dam (regulated sites), as well as Hillabee Creek (unregulated tributary). Flow variables were calculated for each growth year, and the best model that described growth for each species at each location was determined using Akaike's Information Criterion. Additionally, growth increments of each species at ages 1, 2, and 3 were compared between years characterized by low and high flow variability. Age was the best explanatory variable that described growth in all models, although flow variables were included in more than half the models. In all cases, annual and seasonal flow variables had low predictive power and explained <2% of the variation in growth. Growth was higher for age‐1 fish in years with less flow variation but was similar among years for age‐2 and age‐3 fish. Overall, this study provided little evidence that annual growth of either species was heavily influenced by flow in this regulated river.  相似文献   

10.
Large dams often alter flow and thermal regimes downstream, resulting in fish spawning delays and larval abundance declines. Accurate prediction of the delayed spawning period under changed thermal regime is critical for selecting a correct timing to modify dam operation and to release the environmental flow needed to enhance fish spawning. We used correlation analysis to investigate the relationship between thermal regime alteration and spawning delay of the four major Chinese carps (FMCC) below the Three Gorges Dam in the Yangtze River, China, using a 13‐year ecological data series (1997–2009). Eighteen variables were defined to quantify thermal regime and related to two variables representing spawning timing. Our results demonstrate that the start of FMCC spawning has been delayed from early May to middle June since the Three Gorges Dam initiated operation in 2003. Water temperature declines of 2 °C–4 °C in March, April and May (a critical period for gonad development) were the principal reason for the observed spawning delay. The variable most associated with spawning timing was the arrival date of the cumulative temperature needed for gonad development from stages IV to V (DDegDayIV–V), which describes the long‐term impacts of the timing, magnitude and duration of thermal regime upon gonad development. Only the cumulative temperature for gonad development and the minimum temperature for FMCC spawning (18 °C) are both satisfied, the occurrence of suitable flow conditions, that is, flow increase or flash flood, would produce a successful spawning event. Consequently, we suggest that the experimental flow increase process of the Three Gorges Reservoir aimed at enhancing FMCC spawning should initiate after 15 June when the requisite thermal regime can be met. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Stream temperature dynamics within a New Zealand glacierized river basin   总被引:1,自引:0,他引:1  
Knowledge of river thermal dynamics for glacierized basins is limited, despite the high sensitivity of these systems to climatic change/variability. This study examined spatio‐temporal water column and streambed temperature dynamics within a New Zealand glacierized river basin over two melt seasons. Water column temperature was recorded at three sites along the mainstem channel and four hillslope/groundwater‐fed tributaries. Air temperature, precipitation and stream discharge were monitored to characterize hydroclimatological conditions. Streambed temperature was monitored at the upper and lower main river sites at 0.05, 0.2 and 0.4 m depth. Water column temperature rose on average 0.6°C km?1 along the glacier‐fed mainstem. Temperature was elevated during warmer periods but the downstream increase was reduced due to greater meltwater production (consequently a larger total stream flow volume for atmospheric heating) plus a proportional reduction in warmer groundwater contributions. Hillslope/groundwater‐fed tributaries yielded a range of temperature patterns, indicating variable sourcing (meltwater or rainfall) and residence times. In the upper basin, streambed temperature was warmer than the water column, suggesting groundwater upwelling; however, during high runoff events, water column and streambed temperature converged, indicating downwelling/heat advection by channel water. At the lower site, streambed temperature mirrored the water column, suggesting greater surface water/atmospheric influences. Key drivers of stream thermal regime were: (1) relative water source contributions, (2) prevailing hydroclimatological conditions, (3) distance from source, (4) total stream flow volume and (5) basin factors (specifically, valley/channel geomorphology and riparian forest). High magnitude precipitation events produced a contrasting stream thermal response to that reported elsewhere. In contrast to European alpine research, streams showed a reduced thermal range owing to the relatively mild, wet melt season climate. This New Zealand case study highlights the importance of understanding basin‐specific modification of energy and hydrological fluxes for accurate prediction of stream thermal dynamics/habitat and ecological response to climatic variability and change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Temporal variability in water temperature plays an important role in aquatic ecosystems, yet the thermal regime of streams has mainly been described in terms of mean or extreme conditions. In this study, annual and diel variability in stream water temperature was described at 135 unregulated, gauged streams across the USA. Based on magnitude, amplitude and timing characteristics of daily water temperature records ranging from 5 to 33 years, we classified thermal regimes into six distinct types. This classification underlined the importance of including characteristics of variability (amplitude and timing) in addition to aspects of magnitude to discriminate thermal regimes at the continental scale. We used a classification tree to predict thermal regime membership of the six classes and found that the annual mean and range in the long‐term air temperature average along with spring flows were important variables defining the thermal regime types at the continental scale. This research provides a framework for a comprehensive characterization of the thermal regimes of streams that could provide a basis for future assessment of changes in water temperature caused by anthropogenic activities such as dams, land use changes and climate change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Integrated hydrological, geophysical and groundwater modeling studies has been carried out for identification of suitable sites for rainwater harvesting structures for groundwater augmentation in RRCAT Campus, Indore, M.P. Based on these studies ten check dams, two contour bunds and one earthen bund were recommended on the existing stream channels and in valley fills respectively. Likely water impoundment on these structures was calculated keeping in view the length and width of stream channels. Based on these study a groundwater flow model using MODFLOW were carried out keeping in view the geologic and hydrologic conditions of the area. The net rechargeable impounded rain water from these structures to groundwater regime was calculated for monsoon seasons which varied from 20 % to 48 % and net enhancement of groundwater recharge from all structures would be around 0.11 mcm/year and the water level in the existing well would rise by 2–3 m above its present level for future Groundwater augmentation.  相似文献   

14.
Previous studies of climate change impacts on stream fish distributions commonly project the potential patterns of habitat loss and fragmentation due to elevated stream temperatures at a broad spatial scale (e.g. across regions or an entire species range). However, these studies may overlook potential heterogeneity in climate change vulnerability within local stream networks. We examined fine‐scale stream temperature patterns in two headwater brook trout Salvelinus fontinalis stream networks (7.7 and 4.4 km) in Connecticut, USA, by placing a combined total of 36 pairs of stream and air temperature loggers that were approximately 300 m apart from each other. Data were collected hourly from March to October 2010. The summer of 2010 was hot (the second hottest on record) and had well below average precipitation, but stream temperature was comparable with those of previous 2 years because streamflow was dominated by groundwater during base‐flow conditions. Nonlinear regression models revealed stream temperature variation within local stream networks, particularly during warmest hours of the day (i.e. late afternoon to evening) during summer. Thermal variability was primarily observed between stream segments, versus within a stream segment (i.e. from confluence to confluence). Several cold tributaries were identified in which stream temperature was much less responsive to air temperature. Our findings suggested that regional models of stream temperature would not fully capture thermal variation at the local scale and may misrepresent thermal resilience of stream networks. Groundwater appeared to play a major role in creating the fine‐scale spatial thermal variation, and characterizing this thermal variation is needed for assessing climate change impacts on headwater species accurately. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Many studies focus on stream water temperature (WT) because it is considered a key ecological factor. However, few of them have investigated the use of WT data from water level monitoring networks, which often measure WT as ancillary data. Our study was conducted in southern Belgium at a high temporal resolution with continuous data recorded at intervals of 10 min between 2012 and 2016 and large spatial scale greater than 16,000 km2. This study aimed to assess whether a regional water level network (140 stations) is reliable for continuous WT monitoring based on a Bland–Altman analysis with WT collected through a European monitoring network (Water Framework Directive). This study also investigates whether WT data acquired by water level stations can be used to perform both state‐of‐the‐art visualization of thermal regimes and spatio‐temporal queries for specific ecological monitoring. We found that the water level stations were reliable tools in recording continuous WT in the streams of the study area. The temperature difference between the two WT monitoring networks was ?0.57°C on average. Our positive results promote the use of WT from water level stations in order to globally characterize the thermal regime of streams as well as to provide spatial or temporal information on this regime at high frequencies. As an example, our data showed the effectiveness for brown trout (Salmo trutta fario L.) in spatializing thermal risk areas related to the thermal requirement of this fish species; in 2015, 19% of stations located in brown trout fish zone recorded temperatures above 25°C.  相似文献   

16.
Warming temperatures can have negative consequences for aquatic organisms, especially cold-adapted fishes such as Pacific salmon. The magnitude of warming is related to the thermal sensitivity of streams in salmon-bearing watersheds (i.e., change in stream temperature for every 1°C increase in air temperature), which can vary based on several factors including streamflow. Management actions to increase streamflow may therefore benefit salmon by decreasing thermal sensitivity. However, the effects of streamflow on thermal sensitivity are often complex, as the temperature of flow inputs can directly increase or decrease temperatures. This study aimed to disentangle the influence of streamflow on thermal sensitivity and stream temperature over 4 years in the Nicola River, a regulated semiarid watershed in south-central British Columbia, Canada. A statistical modeling approach was used to estimate streamflow effects on stream temperatures and thermal sensitivity (i.e., relationship of regional air temperature to stream temperature) at 12 sites from 2018 to 2021. Streamflow had a variable influence on stream temperatures across the watershed via both direct effects and by modulating thermal sensitivity. At a given site, streamflow was generally negatively associated with summer daily mean stream temperature, but the magnitude of its influence varied among locations and years. The influence of streamflow on thermal sensitivity was also highly variable both spatially and temporally. The analysis suggests that there may be complex relationships between streamflow, stream temperature, and thermal sensitivity, which complicates the efficacy of flow as a lever to mitigate high temperatures in regulated systems.  相似文献   

17.
The effect of regulated flow regimentation on hydrogeomorphological variables, autochthonous and allochthonous trophic sources and macroinvertebrates communities of the Mucone River, Calabria (Italy) were studied in May, August and November 2005 at three study sites. The first site (M1) was located close to the impoundment, the second one (M2) immediately upstream from the first permanent tributary (Cerreto stream) and the third one (M3) about 1 km downstream from the Cerreto confluence. Our results suggest that hydrogeomorphological gradients already exist in spring but their strongest development, with major consequences for the lotic biota, take place only with the beginning and ending of the dry season. Reduction of river width, shading due to well preserved riparian alder trees and marked sand deposition in November, were the variables negatively affecting epilithic microalgae biomass at site M1. These factors partially relieved at M2 site and became much less important at M3 resulting in the highest levels of autotrophic periphyton production. Coarse particulate organic matter accumulation exhibited an opposite trend due to the lack of discharge peaks at M1, whereas in November, litter fall removed most differences between stations. In May macrozoobenthic communities of the three stations were relatively similar (reophilous gatherer and scraper taxa). In November sand accumulation reduced spatial heterogeneity and habitats density close to the Cecita dam promoting settlement of shredder sand tolerant taxa (Plecoptera: Leuctridae) and a drop of community biodiversity. Flow reactivation, especially after Cerreto confluence, hindered sand accumulation, favoured autochthonous primary production and increased energy sources for macroinvertebrates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A 10‐year study of groundwater‐dominated headwater streams in the chalklands of southern England has highlighted the major influence that stream flow has on the composition of in‐channel macrophyte communities. Macrophytes supply much of the physical structure within these headwater channels, as well as providing habitats for a rich assemblage of higher life forms, some of them specialized and rare. The overall influence of stream flow however, is modulated by many environmental factors operating at diverse spatial scales. Data describing the relevant environmental variables were accumulated for six chalk streams in the Thames basin and related directly to the vegetation record by means of Canonical Correspondence Analysis, correlation tests and other analyses, to reveal the circumstances in which communities would be likely to thrive and those in which they would be negatively impacted by variations in stream flow. It was found that local topography and channel dimensions had a direct influence on the composition of communities at local level and that land use and rates of water abstraction had an underlying, but no less important, influence at catchment level. The species most associated with positive species diversity were those of sluggish flow and damp margins indicating the importance of velocity and moisture gradients across the channel in producing a full manifestation of the flora. Strong negative correlations were produced by non‐aquatic grasses and herbs, which represent prolonged periods of channel desiccation. The environmental parameters most associated with positive diversity were high local water stages, wide channels and a high degree of semi‐natural land use within the catchment. Steep channel gradients were strongly associated with negative diversity. The results have confirmed that optimal channel conditions, as exemplified by the classic ‘winterbourne’ with its low‐flow channel, extensive margins, gently sloping banks and high seasonal inundation, will produce good conditions for species diversity and make communities more resistant to the effects of drought. These conditions can be enhanced through sensitive catchment management that encourages rainfall percolation, limits abstractions and seeks to maintain a low intensity of landcover management. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Intensive land use and land cover (LULC) change along with the gradually increasing effects of climate change have made streams both hydrologically and ecologically vulnerable to depletion. Since stream depletion has a direct impact on human and ecological water use with socioeconomic and ecological consequences, it is imperative to manage streams to keep them in a healthy state. In this study, we developed a stream depletion potential index (SDPI) based on the concept of a coupled human-water system (CHWS) operating at simultaneous, interacting scales, and we tested its applicability to watersheds across South Korea. Eight indicators - precipitation, dry days, effective basin area, stream water usage, return flow, groundwater usage, impervious area, and environmental flow supplied by dams - were identified as the key variables for the SDPI. We adopted the Structural Equation Model (SEM) to estimate the weights of the identified indicators based on their causal relationships. Furthermore, we applied three different weighting schemes for urban, rural, and intermediate areas to make the index more effective and applicable to watershed LULC. The spatial distribution of the SDPI results indicated that the western Han River, the central and southern Nak-Dong River and some parts of the southwestern region of the Korean peninsula are prone to stream depletion from several different causes. The SDPI, by predicting changing streamflow characteristics, can be used by policy makers and stakeholders to determine a safe yield for both human and environmental stream use without causing a long-term decline of water availability.  相似文献   

20.
The tailwater is the reach of a stream immediately below an impoundment that is hydrologically, physicochemically and biologically altered by the presence and operation of a dam. The overall goal of this study was to gain a nationwide awareness of the issues afflicting tailwater reaches in the United States. Specific objectives included the following: (i) estimate the percentage of reservoirs that support tailwater reaches with environmental conditions suitable for fish assemblages throughout the year, (ii) identify and quantify major sources of environmental stress in those tailwaters that do support fish assemblages and (iii) identify environmental features of tailwater reaches that determine prevalence of key fish taxa. Data were collected through an online survey of fishery managers. Relative to objective 1, 42% of the 1306 reservoirs included in this study had tailwater reaches with sufficient flow to support a fish assemblage throughout the year. The surface area of the reservoir and catchment most strongly delineated reservoirs maintaining tailwater reaches with or without sufficient flow to support a fish assemblage throughout the year. Relative to objective 2, major sources of environmental stress generally reflected flow variables, followed by water quality variables. Relative to objective 3, zoogeography was the primary factor discriminating fish taxa in tailwaters, followed by a wide range of flow and water quality variables. Results for objectives 1–3 varied greatly among nine geographic regions distributed throughout the continental United States. Our results provide a large‐scale view of the effects of reservoirs on tailwater reaches and may help guide research and management needs. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号