首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn.  相似文献   

2.
Clemens Jauch 《风能》2007,10(3):247-269
In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full‐scale converter‐connected high‐speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full‐scale converter‐connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with the power generation efficiency analysis of a proposed offshore wind farm topology, consisting of a SLPC (single large power converter) that simultaneously controls a group of generators. This common converter can operate at a VF (variable frequency) or at a CF (constant frequency). The results are compared with the conventional onshore wind farm scheme, where individual power converters are connected to each turbine, guaranteeing maximum power generation for the entire wind farm. A methodology to analyze different wind speed and direction scenarios, and to compute the optimal electrical frequency for each one, is presented and applied to different case studies depending on the wind farm size. In order to obtain more realistic values of wind speeds, the wake effect amongst wind turbines is considered. A wake model considering single, partial and multiple wakes inside a wind farm and taking into account different wind directions, is presented. Both wind farm topologies are analyzed by means of simulations, taking into account both wind speed variability in wind farms and the number of wind turbines. The possible resulting benefits of simplifying the MPCs (multiple power converters) of each turbine, namely saving costs, reducing losses and maintenance and increasing the reliability of the system, are analyzed, focusing on the total power extraction. The SLPC-VF scheme is also compared with a CF scheme SLPC-CF, and it is shown that a significant power increase of more than 33% can be obtained with SLPC-VF.  相似文献   

4.
The possibility of a pitch instability for floating wind turbines, due to the blade‐pitch controller, has been discussed extensively in recent years. Contrary to many advanced multi‐input‐multi‐output controllers that have been proposed, this paper aims at a standard proportional‐integral type, only feeding back the rotor speed error. The advantage of this controller is its standard layout, equal to onshore turbines, and the clearly defined model‐based control design procedure, which can be fully automated. It is more robust than most advanced controllers because it does not require additional signals of the floating platform, which make controllers often sensitive to unmodeled dynamics. For the design of this controller, a tailored linearized coupled dynamic model of reduced order is used with a detailed representation of the hydrodynamic viscous drag. The stability margin is the main design criterion at each wind speed. This results in a gain scheduling function, which looks fundamentally different than the one of onshore turbines. The model‐based controller design process has been automated, dependent only on a given stability margin. In spite of the simple structure, the results show that the controller performance satisfies common design requirements of wind turbines, which is confirmed by a model of higher fidelity than the controller design model. The controller performance is compared against an advanced controller and the fixed‐bottom version of the same turbine, indicating clearly the different challenges of floating wind control and possible remedies.  相似文献   

5.
Fault ride-through capability of DFIG wind turbines   总被引:2,自引:0,他引:2  
This paper concentrates on the fault ride-through capability of doubly fed induction generator (DFIG) wind turbines. The main attention in the paper is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. The paper provides also an overview on the interaction between variable-speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of the paper is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behaviour of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk in the power system simulation toolbox PowerFactory DIgSILENT. The data for the wind turbines are not linked to a specific manufacturer, but are representative for the turbine and generator type used in variable-speed DFIG wind turbines with pitch control.  相似文献   

6.
Power converters play a vital role in the integration of wind power into the electrical grid. Variable-speed wind turbine generator systems have a considerable interest of application for grid connection at constant frequency. In this paper, comprehensive simulation studies are carried out with three power converter topologies: matrix, two-level and multilevel. A fractional-order control strategy is studied for the variable-speed operation of wind turbine generator systems. The studies are in order to compare power converter topologies and control strategies. The studies reveal that the multilevel converter and the proposed fractional-order control strategy enable an improvement in the power quality, in comparison with the other power converters using a classical integer-order control strategy.  相似文献   

7.
The use of brushless doubly‐fed induction generator has been recently proposed for wind turbines because of its variable speed operation with fractional size converter without the need to brush and slip ring. This paper introduces a control scheme to improve low voltage ride‐through capability of doubly‐fed induction generator considering grid code requirements. The proposed control strategy is based on analysis of flux linkages and back electromotive forces and intends to retain the control‐winding current below the safety limit (typically 2 pu) during severe voltage dips. The time‐domain simulations validate effectiveness of the proposed scheme to protect the converter against failure as well as support reactive power required by German grid code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The use of active controls has shown to be of substantial help in supporting the increasing size of wind turbines by reducing peak stresses and fatigue loads. In this respect, this paper proposes the use of intuitive frequency‐based control strategies for reducing loads in wind turbine blades equipped with multi‐input multi‐output (MIMO) active flow controllers. For that purpose, a loop‐shaping approach is considered for analysing the dynamic of actively controlled wind turbine blades. Preliminary aeroelastic simulations are carried out to validate the results. It is shown that the MIMO vibration control problem can effectively be decomposed into a number of decoupled single‐input single‐output control problems because of the strong correlation between the dominant aeroelastic blade dynamics and actuator deployments. As a result, it is demonstrated that classical single‐input single‐output control systems can perform as efficiently as MIMO controllers for damping the aeroelastic dynamics of wind turbine blades. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers requires control‐oriented turbine wake models of sufficient accuracy. This paper focuses on constructing such a model from experiments. The experiments were conducted to better understand the wake interaction and impact on voltage production in a three‐turbine array. The upstream turbine operating condition was modulated in time, and the dynamic impact on the downstream turbine was recorded through the voltage output time signal. The flow dynamics observed in the experiments were used to improve a static wake model often used in the literature for wind farm control. These experiments were performed in the atmospheric boundary layer wind tunnel at the Saint Anthony Falls Laboratory at the University of Minnesota using particle image velocimetry for flow field analysis and turbine voltage modulation to capture the physical evolution in addition to the dynamics of turbine wake interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
As wind turbines become larger and hence more flexible, the design of advanced controllers to mitigate fatigue damage and optimise power capture is becoming increasingly important. The majority of the existing literature focuses on feedback controllers that use measurements from the turbine itself and possibly an estimate or measurement of the current local wind profile. This work investigates a predictive controller that can use short‐term predictions about the approaching wind field to improve performance by compensating for measurement and actuation delays. Simulations are carried out using the FAST aeroelastic design code modelling the NREL 5 MW reference turbine, and controllers are designed for both above rated and below rated wind conditions using model predictive control. Tests are conducted in various wind conditions and with different future wind information available. It is shown that in above rated wind conditions, significant fatigue load reductions are possible compared with a controller that knows only the current wind profile. However, this is very much dependent on the speed of the pitch actuator response and the wind conditions. In below rated wind conditions, the goals of power capture and fatigue load control were considered separately. It was found that power capture could only be improved using wind predictions if the wind speed changed rapidly during the simulation and that fatigue loads were not consistently reduced when wind predictions were available, indicating that wind predictions are of limited benefit in below rated wind conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, the conventional individual pitch control (IPC) strategy for wind turbines is reviewed, and a linear IPC strategy for two‐bladed wind turbines is proposed. The typical approach of IPC for three‐bladed rotors involves a multi‐blade coordinate (MBC) transformation, which transforms measured blade load signals, i.e., signals measured in a rotating frame of reference, to signals in a fixed non‐rotating frame of reference. The fixed non‐rotating signals, in the so‐called yaw and tilt direction, are decoupled by the MBC transformation, such that single‐input single‐output (SISO) control design is possible. Then, SISO controllers designed for the yaw and tilt directions provide pitch signals in the non‐rotating frame of reference, which are then reverse transformed to the rotating frame of reference so as to obtain the desired pitch actuator signals. For three‐bladed rotors, the aforementioned method is a proven strategy to significantly reduce fatigue loadings on pitch controlled wind turbines. The same MBC transformation and approach can be applied to two‐bladed rotors, which also results in significant load reductions. However, for two‐bladed rotors, this MBC transformation is singular and therefore, not uniquely defined. For that reason, a linear non‐singular coordinate transformation is proposed for IPC of two‐bladed wind turbines. This transformation only requires a single control loop to reduce the once‐per‐revolution rotating blade loads (‘1P’ loads). Moreover, all harmonics (2P, 3P, etc.) in the rotating blade loads can be accounted for with only two control loops. As in the case of the MBC transformation, also the linear coordinate transformation decouples the control loops to allow for SISO control design. High fidelity simulation studies on a two‐bladed wind turbine without a teetering hub prove the effectiveness of the concept. The simulation study indicates that IPC based on the linear coordinate transformation provides similar load reductions and requires similar pitch actuation compared with the conventional IPC approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
As the penetration of wind energy in worldwide electrical utility grids increases, there is a growing interest in the provision of active power control (APC) services from wind turbines and power plants to aid in maintaining grid stability. Recent research has focused on the design of active power controllers for wind turbines that can provide a range of APC services including inertial, primary frequency and secondary frequency control. An important consideration for implementing these controllers in practice is assessing their impact on the lifetime of wind turbine components. In this paper, the impact on the structural loads of a wind turbine providing a power reserve is explored by performing a load suite analysis for several torque‐based control strategies. Power reserve is required for providing those APC services that require the ability of the wind turbine to supply an increase in power. To study this, we performed a load suite on a simulated model of a research turbine located at the National Wind Technology Center at the National Renewable Energy Laboratory. Analysis of the results explores the effect of the different reserve strategies on turbine loading. In addition, field‐test data from the turbine itself are presented to augment and support the findings from the simulation study results. Results indicate that all power‐reserve strategies tend to decrease extreme loads and increase pitch actuation. Fatigue loads tend to be reduced in faster winds and increased in slower winds, but are dependent on reserve‐controller design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In recent years, the use of electrolyzers to produce cleanly and efficiently hydrogen from renewable energy sources (i.e. wind turbines, photovoltaic) has taken advantage of a growing interest from researchers and industrial. Similarly to fuel cells, DC/DC converters are needed to interface the DC bus with the electrolyzer. Usually, electrolyzers require a low DC voltage to produce hydrogen from water. For this reason, a DC/DC buck converter is generally used for this purpose. However, other DC/DC converter topologies can be used depending on the feature of the electrolyzer and electrical grid as well. The main purpose of this paper is to present the current state-of-the-art of DC/DC converter topologies which can be combined with electrolyzers. The different DC/DC converter topologies are compared in terms of output current ripple reduction, conversion ratio, energy efficiency, and power switch fault-tolerance. Besides, remarks on the state-of-the-art and remaining key issues regarding DC/DC converters are provided.  相似文献   

14.
Improving voltage disturbance rejection for variable-speed wind turbines   总被引:2,自引:0,他引:2  
In this paper, the effect of voltage dips on variable-speed wind turbines using voltage source converters (VSCs) is treated. Three different current controllers for the VSC are described and implemented. Their performance is evaluated when the converter is subject to different types of voltage dips. Both simulated and measured dips are used. The effect of the phase-angle jump of the dips is also taken into account.  相似文献   

15.
A review of power converter topologies for wind generators   总被引:2,自引:0,他引:2  
Wind energy conversion systems have become a focal point in the research of renewable energy sources. This is in no small part due to the rapid advances in the size of wind generators as well as the development of power electronics and their applicability in wind energy extraction. This paper provides a comprehensive review of past and present converter topologies applicable to permanent magnet generators, induction generators, synchronous generators and doubly fed induction generators. The many different generator–converter combinations are compared on the basis of topology, cost, efficiency, power consumption and control complexity. The features of each generator–converter configuration are considered in the context of wind turbine systems.  相似文献   

16.
Today, many countries are integrating large amount of wind energy into the grid and many more are expected to follow. The expected increase of wind energy integration is therefore a concern particularly to transmission grid operators. Based on the past experience, some of the relevant concerns when connecting significant amount of wind energy into the existing grid are: fault ride through requirement to keep wind turbines on the grid during faults and wind turbines have to provide ancillary services like voltage and frequency control with particular regard to island operation.While there are still a number of wind turbines based on fixed speed induction generators (FSIG) currently running, majority of wind turbines that are planned to be erected are of variable speed configurations. The reason for this is that FSIG are not capable of addressing the concern mentioned above. Thus, existing researches in wind turbines are now widely directed into variable speed configurations. This is because apart from optimum energy capture and reduction of mechanical stress, preference of these types is also due to the fact that it can support the network such as its reactive power and frequency regulation. Variable wind turbines are doubly fed induction generator wind turbines and full converters wind turbines which are based on synchronous or induction generators.This paper describes the steady state and dynamic models and control strategies of wind turbine generators. The dynamic models are presented in the dq frame of reference. Different control strategies in the generator side converter and in the grid side converter for fault ride through requirement and active power/frequency and reactive/voltage control are presented for variable speed wind turbines.  相似文献   

17.
Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial‐induction‐based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high‐order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial‐induction‐based control shown in the high‐order model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an in depth evaluation and comparison of three different drivetrain choices based on permanent‐magnet synchronous generator (PMSG) technology for 10‐MW offshore wind turbines. The life cycle approach is suggested to evaluate the performance of the different under consideration drivetrain topologies. Furthermore, the design of the drivetrain is studied through optimized designs for the generator and gearbox. The proposed drivetrain analytical optimization approach supported by numerical simulations shows that application of gearbox in 10‐MW offshore wind turbines can help to reduce weight, raw material cost, and size and simultaneously improve the efficiency. The possibility of resonance with the first torsional natural frequency of drivetrain for the different designed drivetrain systems, the influence of gear ratio, and the feasibility of the application for a spar floating platform are also discussed. This study gives evidence on how gearbox can mitigate the torque oscillation consequences on the other components and how the latter can influence the reliability of drivetrain.  相似文献   

19.
Emphasis of this article is on variable‐speed pitch‐controlled wind turbines with multi‐pole permanent magnet synchronous generator (PMSG) and on their extremely soft drive‐train shafts. A model and a control strategy for a full back‐to‐back converter wind turbine with multi‐pole PMSG are described. The model comprises submodels of the aerodynamic rotor, the drive‐train by a two‐mass model, the permanent magnet generator and the full‐scale converter system. The control strategy, which embraces both the wind turbine control itself and the control of the full‐scale converter, has tasks to control independently the active and reactive powers, to assist the power system and to ensure a stable normal operation of the wind turbine itself. A multi‐pole PMSG connected to the grid through a full‐scale converter has no inherent damping, and therefore, such configuration can become practically unstable, if no damping by means of external measures is applied. In this work, the frequency converter is designed to damp actively the drive‐train oscillations, thus ensuring stable operation. The dynamic performance of the presented model and control strategy is assessed and emphasized in normal operation conditions by means of simulations in the power system simulation tool DIgSILENT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
为实现2 MW风电机组的高效传动,通过实验方法测得导叶可调式双涡轮液力变矩器输出特性曲线,计算得到不同开度下涡轮力矩与涡轮转速的三次项系数关系式,推导风力发电液力调速系统行星轮系的数学模型,设计了模糊自整定PID控制器的控制系统,并对风电机组进行了动态仿真和实验对比研究。结果表明:数值计算功率数值均大于实验值,风速小于5 m/s时绝对误差较小,风速大于5 m/s时进入正常发电工况,最大误差为7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号