首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the absolute stability problem of networked control systems (NCSs) with the controlled plant being Lurie systems (Lurie NCSs), in which the network‐induced delays are assumed to be time‐varying and bounded. First, in consideration of both the time‐varying network‐induced delays and data packet dropouts, the Lurie NCSs can be modeled as a multiple‐delays Lurie system. Then, a delay‐dependent absolute stability condition is established by using the Lyapunov–Krasovskii method. Next, two approaches to controller design are proposed in the terms of simple algebra criteria, which are easily solved via the toolbox in Matlab. Furthermore, the main results can be extended to robust absolute stability of Lurie NCSs with the structured uncertainties, where robust absolute stability conditions and approaches to robust controller design are presented. Finally, two numerical examples are worked out to illustrate the feasibility and the effectiveness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the H control synthesis problem for Lurie networked control systems (NCSs) with multiple time‐varying delays. With the consideration of both network‐induced delays and data packet dropout, Lurie NCSs discussed in this work can effectively be transformed into Lurie control systems with multiple time‐varying delays. In addition, with the non‐uniform distribution characteristics of network delays, based on the delay probability distribution, the stable controller design, and H synthesis, approaches are derived in the form of linear matrix inequalities (LMIs). Finally, a set of numerical examples are studied, and the results demonstrate the applicability and effectiveness of the suggested approaches.  相似文献   

3.
This paper analyzes the stability of networked control systems (NCSs) with data packet dropout and transmission delays induced by communication channels. Discrete‐time NCSs with data packet dropout and transmission delays are modeled as linear systems with time‐varying delays. Sufficient conditions for the stability of the NCSs are established in terms of linear matrix inequalities (LMIs) by using the Lyapunov function method. The case of NCSs with multiple‐packet transmission is also studied. A numerical example is presented to illustrate our proposed approach.  相似文献   

4.
Robust stabilization for a class of nonlinear networked control systems   总被引:2,自引:0,他引:2  
The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.  相似文献   

5.
This paper addresses the stability analysis and synthesis problems for a class of networked control systems (NCSs) under effects of both network‐induced delay and packet dropout. The motivation comes from the increasing NCS applications where the full state vector is not available. To handle the concerned problems, two predictive observer‐based controllers are constructed. The first one is a memoryless controller with the predictive observer collocated with the plant. The second one, with the predictive observer colocated with the controller, uses the last effective plant information as well as the knowledge of the plant dynamics. The stability conditions of NCSs are derived via both network‐condition‐dependent Lyapunov function and common quadric Lyapunov function. The corresponding controller design problems are also solved based upon the obtained stability conditions. Simulation and experimental results are given to demonstrate the effectiveness of the proposed approaches. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
This paper focuses on the problems of asymptotic stability and finite‐time stability (FTS) analysis, along with the state feedback controller design for networked control systems (NCSs) with consideration of both network‐induced delay and packet dropout. The closed‐loop NCS is modeled as a discrete‐time linear system with a time‐varying, bounded state delay. Sufficient conditions for the asymptotic stability and the FTS of the closed‐loop NCS are provided, respectively. Based on the stability analysis results, a mixed controller design method, which guarantees the asymptotic stability of the closed‐loop NCS in the usual case and the FTS of the closed‐loop NCS in the unusual case (that is, in some particular time intervals, large state delay occurs), is presented. A numerical example is provided to illustrate the effectiveness of the proposed mixed controller design method.  相似文献   

7.
This paper is concerned with the observer‐based H control for continuous‐time networked control systems (NCSs) considering packet dropouts and network‐induced delays. The packet dropouts and network‐induced delays in the sensor‐to‐controller (S‐C) channel and network‐induced delays in the controller‐to‐actuator (C‐A) channel are taken into full consideration. By taking the non‐uniform distribution characteristic of the arrival instants of actually adopted controller inputs into account, a new model for continuous‐time NCSs is established. To reduce the conservatism of modelling, a linear estimation‐based measurement output estimation method is introduced. Based on the newly established model and a Lyapunov functional, new controller design methods are proposed. A numerical example is given to illustrate the effectiveness and merits of the derived results.  相似文献   

8.
一类基于观测器的非线性网络化控制系统的绝对稳定性   总被引:1,自引:0,他引:1  
赵翔辉  郝飞 《自动化学报》2009,35(7):933-944
主要考虑了基于观测器的Lurie网络化控制系统的绝对稳定性问题. 由于采用了基于观测器的反馈控制器, 传感器到控制器的网络诱导时延和控制器到执行器的网络诱导时延不再能合并到一起处理. 首先通过状态增广方法将Lurie网络化控制系统建模为一个多时滞的Lurie系统, 然后利用Newton-Leibniz公式和添加自由权矩阵的方法给出了时滞依赖的稳定性条件. 在此基础上, 给出三种求解控制器和观测器增益矩阵的方法. 此外, 还分别给出了被控对象存在范数有界不确定性和结构不确定性时系统的鲁棒稳定性条件及鲁棒控制器设计方法, 所有得到的结果都是以线性矩阵不等式的形式给出的. 便于利用线性矩阵不等式工具包进行求解. 最后, 通过两个仿真算例说明了方法的可行性和有效性.  相似文献   

9.
This paper presents a new model for networked control systems (NCSs) under transmission control protocol (TCP) as a multiple‐delay system by considering both sensor to controller and controller to actuator delays. An analytical TCP model has been considered for the network part, and an active queue management (AQM) controller is designed to regulate the desired queue length, which ensures holding the network induced delay and its variation within their lower bounds. The model is assumed to possess structured uncertainties due to the stochastic nature of the network. Robust stability and stabilization conditions are derived in terms of linear matrix inequalities (LMIs) by applying the Lyapunov‐Krasovskii stability criterion. Illustrative examples are presented and it has been shown that the proposed method will obtain less conservative results compared to the existing approaches in the literature.  相似文献   

10.
This paper is concerned with modeling and controlling under the mixed event‐triggered mechanism (ETM) for networked control systems (NCSs) with time‐varying delays and uncertainties. Firstly, an event‐triggered threshold is set by using both state and state‐independent informations in the mixed ETM. Then the event‐triggered NCSs with network‐induced time‐varying delays which exist in both sensor‐to‐controller and controller‐to‐actuator channels are modeled as a general time‐delay system. Based on the piecewise differentiable characteristic of the time‐varying delay and by using the approach of free weighting matrix and reciprocally convex, a less conservative criterion to be globally uniformly ultimately bounded (GUUB) stability and a controller design method are derived. Furthermore, an algorithm is proposed to obtain the desired mixed ETM and state‐feedback controller which can render the network load and control performance to reach an expected level. Compared with the relative and absolute ETMs, the proposed mechanism can effectively improve the transmission efficiency during the whole working time. Finally, a numerical example is given to show the effectiveness of the proposed approach.  相似文献   

11.
The paper deals with the problem of the asymptotic stability for general continuous nonlinear networked control systems (NCSs). Based on Lyapunov stability theorem combined with improved Razumikhin technique, the sufficient conditions of asymptotic stability for the system are derived. With the proposed method, the estimate of maximum allowable delay bound (MADB) for linear networked control system is also given. Compared to the other methods, the proposed method gives a much less conservative MADB and more general results. Numerical examples and some simulations are worked out to demonstrate the effectiveness and performance of the proposed method.  相似文献   

12.
This paper presents a robust control approach to solve the stability and stabilization problems for networked control systems (NCSs) with short time‐varying delays. A new discrete‐time linear uncertain system model is proposed to describe the NCS, and the uncertainty of the network‐induced delay is transformed into the uncertainty of the system matrix. Based on the obtained uncertain system model, a sufficient BIBO stability condition for the closed‐loop NCS is derived by applying the small gain theorem. The obtained stability condition establishes a quantitative relation between the BIBO stability of the closed‐loop NCS and two delay parameters, namely, the delay upper bound and the delay variation range bound. Moreover, design procedures for the state feedback stabilizing controllers are also presented. An illustrative example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
彭晨  田恩刚 《自动化学报》2010,36(1):188-192
提出一种改进的具有非理想网络状况, 如时变网络时延和丢包等的网络控制系统分析与综合方法. 在引入具有最新信号选择功能的逻辑零阶保持器和已有的网络系统模型基础上, 采用Lyapunov-Krasovskii泛函方法, 通过引入自由矩阵消除交叉项和利用函数的凸性进行等价变换, 得到保守性较小的效果. 实例表明上述方法的有效性.  相似文献   

14.
This paper presents a novel impulsive system approach to input-to-state stability (ISS) analysis of networked control systems (NCSs) with time-varying sampling intervals and delays. This approach is based upon the new idea that an NCS can be viewed as an interconnected hybrid system composed of an impulsive subsystem and an input delay subsystem. A new type of time-varying discontinuous Lyapunov-Krasovskii functional, which makes full use of the information on the piecewise-constant input and the bounds of the network delays, is introduced to analyze the ISS property of NCSs. Linear matrix inequality based sufficient conditions are derived for ISS of NCSs with respect to external disturbances. When applied to the approximate tracking problem for NCSs, the derived ISS result provides bounds on the steady-state tracking error. Numerical examples are provided to show the efficiency of the proposed approach.  相似文献   

15.
有界丢包网络控制系统的稳定性与能稳性   总被引:3,自引:0,他引:3  
主要讨论有界丢包网络控制系统的稳定性与能稳性. 基于迭代方法将有界丢包网络控制系统建模为一个跳变系统. 由于网络的复杂性, 跳变系统状态转移矩阵的部分元素无法获得, 因此, 我们考虑的这种情况更具有一般性. 并且本文考虑的丢包同时存在于前馈和反馈通道. 最后, 数值例子表明本文方法的有效性.  相似文献   

16.
Linearizing control of induction motor based on networked control systems   总被引:1,自引:1,他引:0  
A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.  相似文献   

17.
This paper addresses the problem of output feedback control for networked control systems (NCSs) with limited communication capacity. Firstly, we propose a new model to describe the non-ideal network conditions and the input/output state quantization of the NCSs in a unified framework. Secondly, based on our newly proposed model and an improved separation lemma, the observer-based controller is developed for the asymptotical stabilization of the NCSs, which are shown in terms of nonlinear matrices inequalities. The nonlinear problems can be computed through solving a convex optimization problems, and the observed and controller gains could be derived by solving a set of linear matrix inequalities. Thirdly, two simulation examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

18.
将网络控制系统建模为时变时滞系统模型,考虑有界、时变时延和丢包的网络控制系统的稳定性分析和控制器设计问题。首先构造一个新的分段Lyapunov-Krasovskii泛函,充分利用时延上下界信息,然后结合更紧的有限和不等式处理时滞区间,得到具有较小保守性的稳定性准则,基于一种改进的锥补线性化迭代算法给出状态反馈器设计方法,证明中没有引进模型变换和自由矩阵,减少了计算上的复杂性。通过实例表明上述方法的有效性。  相似文献   

19.
网络控制系统的最大允许时延界   总被引:1,自引:0,他引:1  
提出确定多输入多输出网络控制系统的最大允许时延界的新方法. 由于网络诱导时延的分布特性, 整个多输入多输出网络控制系统实际上是一个多时延系统. 利用李雅普诺夫第二方法, 得到网络控制系统时延相关渐近稳定性判据. 最大允许时延界和输出反馈镇定控制器均可通过求解矩阵不等式(LMI)得到. 仿真比较说明了本文结果的正确性和可行性.  相似文献   

20.
In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with networkinduced delays and uncertainties through new methods are proposed. Some new stability criteria in terms of LMIs are derived by using Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques. We analyze the delay-dependent asymptotic stability and obtain maximum allowable delay bound (MADB) for the NCSs with the proposed methods. Compared with the reported results, the proposed results obtain a much less conservative MADB which are more general. Numerical example and simulation is used to illustrate the effectiveness of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号