首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an approach to adaptive trajectory tracking of mobile robots which combines a feedback linearization based on a nominal model and a RBF-NN adaptive dynamic compensation. For a robot with uncertain dynamic parameters, two controllers are implemented separately: a kinematics controller and an inverse dynamics controller. The uncertainty in the nominal dynamics model is compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. The analysis of the RBF-NN approximation error on the control errors is included. Finally, the performance of the control system is verified through experiments.  相似文献   

2.
For output‐feedback adaptive control of affine nonlinear systems based on feedback linearization and function approximation, the observation error dynamics usually should be augmented by a low‐pass filter to satisfy a strictly positive real (SPR) condition so that output feedback can be realized. Yet, this manipulation results in filtering basis functions of approximators, which makes the order of the controller dynamics very large. This paper presents a novel output‐feedback adaptive neural control (ANC) scheme to avoid seeking the SPR condition. A saturated output‐feedback control law is introduced based on a state‐feedback indirect ANC structure. An adaptive neural network (NN) observer is applied to estimate immeasurable system state variables. The output estimation error rather than the basis functions is filtered and the filter output is employed to update NNs. Under given initial conditions and sufficient control parameter constraints, it is proved that the closed‐loop system is uniformly ultimately bounded stable in the sense that both the state estimation errors and the tracking errors converge to small neighborhoods of zero. An illustrative example is provided to demonstrate the effectiveness of this approach.  相似文献   

3.
This paper is concerned with the design of a robust adaptive tracking control scheme for a class of variable stiffness actuators (VSAs) based on the lever mechanisms. For these VSAs based on the lever mechanisms, the AwAS‐II developed at Italian Institute of Technology (IIT) is chosen as the study object, and it is an enhanced version of the original realization AwAS (actuator with adjustable stiffness). Firstly, for the dynamic model of the AwAS‐II system in the presence of parametric uncertainties, unknown bounded friction torques, unknown bounded external disturbance and input saturation constraints, by using the coordinate transformations and the static state feedback linearization, the state space model of the AwAS‐II system with composite disturbances and input saturation constraints is transformed into an uncertain multiple‐input multiple‐output (MIMO) linear system with lumped disturbances and input saturation constraints. Subsequently, a combination of the feedback linearization, disturbance observer, sliding mode control and adaptive input saturation compensation law is adopted for the design of the robust tracking controller that simultaneously regulates the position and stiffness of the AwAS‐II system. Under the proposed controller, the semi‐global uniformly ultimately bounded stability of the closed‐loop system has been proved via Lyapunov stability analysis. Simulation results illustrate the effectiveness and the robustness of the proposed robust adaptive tracking control scheme.  相似文献   

4.
A robust neural control scheme for mechanical manipulators is presented. The design basically consists of an adaptive neural controller which implements a feedback linearization control law for a generic manipulator with unknown parameters, and a sliding-mode control which robustifies the design and compensates for the neural approximation errors. It is proved that the resulting closed-loop system is stable and that the trajectory-tracking control objective is achieved. Some simulation results are also provided to evaluate the design.  相似文献   

5.
Adaptive critic (AC) based controllers are typically discrete and/or yield a uniformly ultimately bounded stability result because of the presence of disturbances and unknown approximation errors. A continuous-time AC controller is developed that yields asymptotic tracking of a class of uncertain nonlinear systems with bounded disturbances. The proposed AC-based controller consists of two neural networks (NNs) – an action NN, also called the actor, which approximates the plant dynamics and generates appropriate control actions; and a critic NN, which evaluates the performance of the actor based on some performance index. The reinforcement signal from the critic is used to develop a composite weight tuning law for the action NN based on Lyapunov stability analysis. A recently developed robust feedback technique, robust integral of the sign of the error (RISE), is used in conjunction with the feedforward action neural network to yield a semiglobal asymptotic result. Experimental results are provided that illustrate the performance of the developed controller.  相似文献   

6.
研究提高关节机器人轨迹跟踪控制的性能,由于关节机器人运动中产生振动,影响系统的稳定性能。为解决上述问题,提出了一种反馈线性化的自适应模糊积分滑模控制方法。在上述方法的基础上,对机器人非线性动力学模型反馈线性化。为了进一步提高滑模控制的精度,设计了一种积分滑模面的滑模控制器,可以减弱积分滑模控制的抖振。通过设计一个模糊控制器,根据积分滑模面的大小自适应地调节积分滑模控制的切换部分,达到削弱抖振的目的。利用李亚普诺夫定理证明了控制系统的稳定性。仿真结果表明,改进方法有效地提高了关节机器人跟踪控制性能。  相似文献   

7.
电液伺服系统的多滑模鲁棒自适应控制   总被引:7,自引:0,他引:7  
针对一类参数与外负载非匹配不确定的非线性高阶系统,提出了一种基于逐步递推方法的多滑模鲁棒自适应控制策略.应用逐步递推的多滑模控制方法简化了高阶系统的控制问题,同时在自适应控制中加入鲁棒控制的方法,以消除不确定性对控制性能的影响.首先利用逐步递推方法与状态反馈精确线性化理论,得出确定系统的多滑模控制器设计方法;然后基于Lyapunov稳定性分析方法,给出不确定系统的参数自适应律,及鲁棒自适应控制器的设计方法.本文把该控制策略应用到电液伺服系统的位置跟踪控制中,仿真结果显示,该控制方法具有较强的鲁棒性及良好的跟踪效果.  相似文献   

8.
In this paper, an admittance control scheme for a user-in-charge exoskeleton is presented. The controller basically consists of a composite adaptive controller implementing a feedback law to estimate the structured uncertainties and to modify the apparent dynamics of the robot, and an LWPR estimator which tries to give an appropriate approximation of unmodeled uncertainty along with a robust term aiming to overcome the approximation residue. The control scheme offers a unified general control structure that explains the effect of each control component on the others. It is proved that based on the developed controller, the tracking and estimation errors converge to small boundaries with ultimate boundedness property due to the presence of the unstructured uncertainty. Based on simulations of a 2-DOF leg, the effectiveness of the controller is investigated. The results show the effectiveness of employing a universal approximator alongside a robust adaptive control and the success of the recommended approach in estimating model parameters and unmodeled dynamics simultaneously.  相似文献   

9.
10.
In this paper, the H input/output (I/O) linearization formulation is applied to design an inner‐loop nonlinear controller for a nonlinear ship course‐keeping control problem. Due to the ship motion dynamics are non‐minimum phase, it is impossible to use the ordinary feedback I/O linearization to resolve. Hence, the technique of H I/O linearization is proposed to obtain a nonlinear H controller such that the compensated nonlinear system approximates the linear reference model in I/O behaviour. Then a μ‐synthesis method is employed to design an outer‐loop robust controller to address tracking, regulation, and robustness issues. The time responses of the tracking signals for the closed‐loop system reveal that the overall robust nonlinear controller is able to provide robust stability and robust performance for the plant uncertainties and state measurement errors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the integrated kinematic and dynamic trajectory tracking control problem of wheeled mobile robots (WMRs) is addressed. An adaptive robust tracking controller for WMRs is proposed to cope with both parametric and nonparametric uncertainties in the robot model. At first, an adaptive nonlinear control law is designed based on input–output feedback linearization technique to get asymptotically exact cancellation of the parametric uncertainty in the WMR parameters. The designed adaptive feedback linearizing controller is modified by two methods to increase the robustness of the controller: (1) a leakage modification is applied to modify the integral action of the adaptation law and (2) the second modification is an adaptive robust controller, which is included to the linear control law in the outer loop of the adaptive feedback linearizing controller. The adaptive robust controller is designed such that it estimates the unknown constants of an upper bounding function of the uncertainty due to friction, disturbances and unmodeled dynamics. Finally, the proposed controller is developed for a type (2, 0) WMR and simulations are carried out to illustrate the robustness and tracking performance of the controller.  相似文献   

12.
A composite adaptive control (CAC) that combines the benefits of direct and indirect adaptive controls has better parameter adaptation and control response. Multilayer neural networks (NNs) can be employed to enhance a model's representation capacity, but previous composite adaptive approaches cannot easily train the model due to its nonlinearities. A novel CAC is therefore developed in this study to tackle the above limitations. A modified robust version is adopted by focusing on the direct adaptive part to enhance robustness of adaption. Then, the indirect parameter adaptive law is improved by adopting a small learning rate in which a multistep adaption update is executed in one control interval. Moreover, multistep prediction errors are implemented to guarantee the consistency of the approximation errors, and an experience replay technique is adopted to attenuate the requirement of persistent excitation conditions. These improvements not only accelerate the convergence process but also smoothen the updating of NN parameters. Given that a nonlinear plant with MIMO strict‐feedback structure is considered, the proposed CAC is integrated into the backstepping framework. The uniformly bounded property of the tracking errors and the approximation errors is proven by Lyapunov theory. The superiority of the proposed method and the roles of these improvements are demonstrated by comparative simulations.  相似文献   

13.
Neural networks for advanced control of robot manipulators   总被引:7,自引:0,他引:7  
Presents an approach and a systematic design methodology to adaptive motion control based on neural networks (NNs) for high-performance robot manipulators, for which stability conditions and performance evaluation are given. The neurocontroller includes a linear combination of a set of off-line trained NNs, and an update law of the linear combination coefficients to adjust robot dynamics and payload uncertain parameters. A procedure is presented to select the learning conditions for each NN in the bank. The proposed scheme, based on fixed NNs, is computationally more efficient than the case of using the learning capabilities of the neural network to be adapted, as that used in feedback architectures that need to propagate back control errors through the model to adjust the neurocontroller. A practical stability result for the neurocontrol system is given. That is, we prove that the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the NN bank and the design parameters of the controller. In addition, a robust adaptive controller to NN learning errors is proposed, using a sign or saturation switching function in the control law, which leads to global asymptotic stability and zero convergence of control errors. Simulation results showing the practical feasibility and performance of the proposed approach to robotics are given.  相似文献   

14.
In this paper, a discontinuous projection‐based adaptive robust control (ARC) scheme is constructed for a class of nonlinear systems in an extended semi‐strict feedback form by incorporating a nonlinear observer and a dynamic normalization signal. The form allows for parametric uncertainties, uncertain nonlinearities, and dynamic uncertainties. The unmeasured states associated with the dynamic uncertainties are assumed to enter the system equations in an affine fashion. A novel nonlinear observer is first constructed to estimate the unmeasured states for a less conservative design. Estimation errors of dynamic uncertainties, as well as other model uncertainties, are dealt with effectively via certain robust feedback control terms for a guaranteed robust performance. In contrast with existing conservative robust adaptive control schemes, the proposed ARC method makes full use of the available structural information on the unmeasured state dynamics and the prior knowledge on the bounds of parameter variations for high performance. The resulting ARC controller achieves a prescribed output tracking transient performance and final tracking accuracy in the sense that the upper bound on the absolute value of the output tracking error over entire time‐history is given and related to certain controller design parameters in a known form. Furthermore, in the absence of uncertain nonlinearities, asymptotic output tracking is also achieved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses the problem of designing robust tracking control for a class of uncertain wheeled mobile robots actuated by brushed direct current motors. This class of electrically‐driven mechanical systems consists of the robot kinematics, the robot dynamics, and the wheel actuator dynamics. Via the backstepping technique, an intelligent robust tracking control scheme that integrates a kinematic controller and an adaptive neural network‐based (or fuzzy‐based) controller is developed such that all of the states and signals of the closed‐loop system are bounded and the tracking error can be made as small as possible. Two adaptive approximation systems are constructed to learn the behaviors of unknown mechanical and electrical dynamics. The effects of both the approximation errors and the unmodeled time‐varying perturbations in the input and virtual‐input weighting matrices are counteracted by suitably tuning the control gains. Consequently, the robust control scheme developed here can be employed to handle a broader class of electrically‐driven wheeled mobile robots in the presence of high‐degree time‐varying uncertainties. Finally, a simulation example is given to demonstrate the effectiveness of the developed control scheme.  相似文献   

16.
An adaptive neural network (NN)-based output feedback controller is proposed to deliver a desired tracking performance for a class of discrete-time nonlinear systems, which are represented in non-strict feedback form. The NN backstepping approach is utilized to design the adaptive output feedback controller consisting of: (1) an NN observer to estimate the system states and (2) two NNs to generate the virtual and actual control inputs, respectively. The non-causal problem encountered during the control design is overcome by using a dynamic NN which is constructed through a feedforward NN with a novel weight tuning law. The separation principle is relaxed, persistency of excitation condition (PE) is not needed and certainty equivalence principle is not used. The uniformly ultimate boundedness (UUB) of the closed-loop tracking error, the state estimation errors and the NN weight estimates is demonstrated. Though the proposed work is applicable for second order nonlinear discrete-time systems expressed in non-strict feedback form, the proposed controller design can be easily extendable to an nth order nonlinear discrete-time system.  相似文献   

17.
This paper deals with the synchronized motion trajectory tracking control problem of multiple pneumatic cylinders. An adaptive robust synchronization controller is developed by incorporating the cross‐coupling technology into the integrated direct/indirect adaptive robust control (DIARC) architecture. The position synchronization error and the trajectory tracking error of each cylinder are combined to construct the so‐called coupled position error. The proposed adaptive robust synchronization controller is designed with the feedback of this coupled position error and is composed of two parts: an on‐line parameter estimation algorithm and a robust control law. The former is employed to obtain accurate estimates of model parameters for reducing the extent of parametric uncertainties, while the latter is utilized to attenuate the effects of parameter estimation errors, unmodelled dynamics, and external disturbances. Theoretically, both the position synchronization and trajectory tracking errors will achieve asymptotic convergence simultaneously. Moreover, the effectiveness of the proposed controller is verified by the extensive experimental results performed on a two‐cylinder pneumatic system.  相似文献   

18.
A systematic approach to design a nonlinear controller using minimax linear quadratic Gaussian regulator (LQG) control is proposed for a class of multi‐input multi‐output nonlinear uncertain systems. In this approach, a robust feedback linearization method and a notion of uncertain diffeomorphism are used to obtain an uncertain linearized model for the corresponding uncertain nonlinear system. A robust minimax LQG controller is then proposed for reference command tracking and stabilization of the nonlinear system in the presence of uncertain parameters. The uncertainties are assumed to satisfy a certain integral quadratic constraint condition. In this method, conventional feedback linearization is used to cancel nominal nonlinear terms and the uncertain nonlinear terms are linearized in a robust way. To demonstrate the effectiveness of the proposed approach, a minimax LQG‐based robust controller is designed for a nonlinear uncertain model of an air‐breathing hypersonic flight vehicle (AHFV) with flexibility and input coupling. Here, the problem of constructing a guaranteed cost controller which minimizes a guaranteed cost bound has been considered and the tracking of velocity and altitude is achieved under inertial and aerodynamic uncertainties.  相似文献   

19.
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.  相似文献   

20.
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号