首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Transient changes in immediate-early genes and neurotrophin expression produced by kindling stimulation may mediate secondary downstream events involved in kindling development. Recent experiments have demonstrated conclusively that both kindling progression and mossy fibre sprouting are significantly impaired by administration of the N-methyl-D-aspartate (NMDA) receptor antagonist MK801. To further examine the link between kindling, changes in gene expression and the NMDA receptor, we examined the effects of MK801 on neuronal induction of immediate-early genes, brain-derived neurotrophic factor (BDNF) and trk receptor mRNA expression produced by a single electrically induced hippocampal after-discharge in rats. The after-discharge produced a rapid (after 1 h) increase in Fos, Jun-B, c-Jun, Krox-24 mRNA and protein and Krox-20 protein in dentate granule neurons and a delayed, selective expression of Fos, Jun-D and Krox-24 in hilar interneurons. MK801 pretreatment produced a very strong inhibition of Fos, Jun-D and Krox-20 increases in dentate neurons but had a much smaller effect on Jun-B and c-Jun expression. MK801 did not inhibit Krox-24 expression in granule neurons or the delayed expression of Fos, Jun-D and Krox-24 in hilar interneurons. BDNF protein and trk B and trk C mRNA expression were also strongly induced in dentate granule cells 4 h following an after-discharge. MK801 abolished the increase in BDNF protein and trk B, but not trk C mRNA in granule cells at 4 h. These results demonstrate that MK801 differentially regulates the AD-increased expression of a group of genes previously identified as being likely candidates for an involvement in kindling. Because MK801 significantly retards the development of kindling and mossy fibre sprouting, it can be argued that those genes whose induction is not significantly attenuated by MK801 are unlikely to play an important role in the MK801-sensitive component of kindling and the changes in neural connectivity (mossy fibre sprouting) associated with kindling. Conversely, the role in kindling of those genes whose expression was significantly attenuated by MK801 (Fos, Jun-D, Krox-20, trkB and BDNF) requires further examination.  相似文献   

12.
13.
14.
15.
To investigate the contribution that ERK/mitogen-activated protein kinase signalling makes to cell cycle progression and gene expression, we have constructed cell lines to express an inducible version of activated MEK1. Using these cells, we show that activation of MEK leads to the expression of Fra-1 and Fra-2 but not c-Fos. Treatment of Ras-transformed cells with the MEK inhibitor PD098059 blocks expression of Fra-1 and Fra-2, showing that in Ras transformation ERK signalling is responsible for Fra-1 and Fra-2 expression. Activation of MEK1 in growth-arrested cells leads to DNA synthesis; however, ERK activation alone is insufficient because the induction of DNA synthesis is blocked by inhibition of phosphatidylinositol 3-kinase (PI3-kinase). Activation of PI3-kinase is indirect, perhaps through autocrine growth factors, and is required for the induction of cyclin D1.  相似文献   

16.
The peripheral nervous system retains a considerable capacity for regeneration. However, functional recovery rarely returns to the preinjury level no matter how accurate the nerve repair is, and the more proximal the injury the worse the recovery. Among a variety of approaches being used to enhance peripheral nerve regeneration are the manipulation of Schwann cells and the use of neurotrophic factors. Such factors include, first, nerve growth factor (NGF) and the other recently identified members of the neurotrophin family, namely, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5); second, the neurokines ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF); and third, the transforming growth factors (TGFs)-beta and their distant relative, glial cell line-derived neurotrophic factor (GDNF). In this review article we focus on the roles in peripheral nerve regeneration of Schwann cells and of the neurotrophin family, CNTF and GDNF, and the relationship between these. Finally, we discuss what remains to be understood about the possible clinical use of neurotrophic factors.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号