首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
传统的蓖麻油裂解制备癸二酸工艺因使用稀释剂邻甲酚和催化剂铅氧化物而导致严重的环境污染。以对环境温和的液体石蜡作稀释剂,筛选环境友好型催化剂制备癸二酸,开发清洁生产工艺,研究发现,采用氧化铁作催化剂可取得良好的裂解反应效果。最佳工艺条件为:催化剂用量为蓖麻油质量的1.00%,V(稀释剂)∶V(蓖麻油)=4∶1,V(碱液)∶V(蓖麻油)=1∶1,反应温度280 ℃,反应时间4 h。在此条件下,癸二酸收率达67.2%,分离后纯度达到99.0%。表明氧化铁作为催化剂配合液体石蜡作稀释剂可望开发一条蓖麻油裂解制备癸二酸的清洁生产工艺。  相似文献   

2.
To enhance photocatalytic water splitting, various oxidizing sacrifice agents (OSA) have been added to the system in order to scavenge the coproduced O2, and, thus, to hinder the reverse reactions. In the aim of achieving carbon‐neutral photocatalytic water splitting, nonfood hydrocarbons of castor‐ and jojoba‐oils were evaluated as OSA. Moreover, various surfactants were tested as emulsifiers for W/O binary solution for promoting photocatalytic water splitting rate. Among the OSA used, the castor‐oil was found to be more suitable candidate compared to jojoba‐oil, which was attributed to its smaller carbon chain numbers of mainly 18. Without surfactants, around 20 vol %‐castor‐oil aqueous binary solution with TiO2/Pt(0.10 wt %) provided the highest water splitting rate of about 30 mL‐H2/(m2·h). Among tested surfactants, liquid‐detergent was the best due to its optical transparency. 40 vol %‐ or 60 vol %‐castor‐oil emulsion with a drop of liquid‐detergent resulted in a water splitting rate of 125 mL‐H2/(m2·h), which was four times greater that the aforementioned highest value. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

3.
Studies of linseed, castor seed and Vernonia anthelmintica seed oils have been undertaken together keeping in view their industrial importance. Linseed oil contains the highest percentage of linolenic acid (69.1%) whereas the highest percentage of hydroxy fatty acid (85.6%) and epoxy fatty acids (76.8%) has been found out in castor seed and Vernonia anthelmintica seed oils respectively as determined by the application of thin-layer and gas liquid chromatography.  相似文献   

4.
Moisture-cured polyurethane films have been prepared by reaction between toluene diisocyanate and castor oil or derivatives such as castor oil diethanol amide, castor oil monoglyceride, ethylene glycol monoricinoleate, and propylene glycol monoricinoleate. Effect of acetylated castor oil as an internal plasticizer on the resulting urethane films has been studied. Catalytic effect of 3-5% triethanol amine on curing of plasticized films has been noted. Plasticized polyurethane films show good tensile strength (105-550 kg/cm2) and elongation (15-215%) properties, having high melting point (210-272 C) and good resistance to solvents and chemicals.  相似文献   

5.
In this study a novel macromer technique has been described for the styrenation of triglyceride oils. Macromers were prepared through the interesterification of castor oil with linseed oil followed by esterification with acrylic acid. In this preparation various castor oil/linseed oil ratios were applied to obtain a macromer which gave a copolymer with good film properties after copolymerization with styrene. Macromers were styrenated at 100°C using benzoyl peroxide as an initiator. The styrenation leads to improved film properties with the related interesterification product although castor oil is a non‐drying oil.  相似文献   

6.
In this study, castor oil was alcoholyzed with both aliphatic alcohols, such as glycerol and pentaerythritol, and an aromatic alcohol, bisphenol A propoxylate. The resulting alcoholysis products were then malinated and cured in the presence of styrene. Soybean oil pentaerythritol glyceride maleates were also prepared for a direct comparison of the properties of the castor oil and soybean oil based resins. Castor oil was directly malinated as well to see the effect of the alcoholysis step on the properties of the castor oil based resins. The monomers synthesized were characterized by 1H‐NMR spectroscopy, and the styrenated resin liquid properties, such as viscosity and surface energy values, were determined. The conversion of polymerization was determined using time resolved FTIR analysis for the styrenated soybean oil pentaerythritol glyceride maleates, castor oil maleates, and castor oil pentaerythritol glyceride maleates. The effect of monomer identity and styrene content on the conversion of polymerization was explored. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2433–2447, 2006  相似文献   

7.
Castor oil is a triglyceride extracted from the seed (castor bean) of the castor plant. This plant will thrive on relatively poor soil and in an arid climate. The oil is nonedible but is produced annually in large volume to be converted to biodiesel (largely for the European market). The oil contains both unsaturation and hydroxyl functionality that may be utilized for conversion to flame retarding materials. A series of phosphorus esters has been generated from castor oil. All display good flame retardancy in the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. Introduction of bromine at the double bond generally enhances the flame retardancy of these esters.  相似文献   

8.
新型碱性离子液体催化蓖麻油制备生物柴油   总被引:10,自引:0,他引:10  
合成了新型碱性离子液体[Bmim]OH,将其应用于催化蓖麻油制备生物柴油,并与催化剂KOH、四丁基氢氧化铵进行比较,结果好于后两者。正交实验优化的碱性离子液体[Bmim]OH催化工艺条件为:催化剂用量为1%,醇油摩尔比为6∶1,反应温度为40℃,反应时间为60 min。在该优化条件下,甲酯混合物收率高于97%,蓖麻油基本上完全转化,其中高于95%转化为产物甲酯,催化剂[Bmim]OH重复使用6次没有明显消耗,催化性能稳定。  相似文献   

9.
Hydrogenated castor oil from castor oil is promisingly used as raw materials for lubricants, coatings, cosmetics, and pharmaceutics due to high melting point and stable physical properties. However, the chemical modification of the hydrogenated castor oil has been rarely investigated. Here, we report a N-phenyl-fatty-amido-1-propyl-N,N-dimethyl-amino-carboxyl-betaine surfactant derived from hydrogenated castor oil with excellent interfacial properties through a rapid synthetic process, including direct alkylation, amidation, and quaternization. The interfacial tension between crude oil and brine was ultra-low for a low dosage of 0.007 g L−1 of surfactant in aqueous solution without any alkali addition, which implies a potential application in enhanced oil recovery.  相似文献   

10.
Solvent-blown rigid urethane foams prepared from a low-cost polyol mixture composed of raw castor oil and triisopropanolamine have been described. Foams with higher compressive strengths can be obtained by substituting oxidized (blown) castor oil for the raw castor oil in formulations of this type. The properties of rigid foams prepared from several commercial blown castor oils are described. The properties of these foams are correlated with the degree of oxidation of the blown oils used, as indicated by their oxygen content, density, viscosity, and refractive index. Removal of acid from blown oils having high acid values has no significant effect on the compressive strength of foams prepared from these oils. When blown castor oil is used instead of raw castor oil, less isocyanate is required to produce a urethane foam of specified density and compressive strength. Presented at the AOCS meeting in Toronto, Canada, 1962. A laboratory of the W. Utiliz. Res. & Dev. Div., ARS, U.S.D.A.  相似文献   

11.
Castor oil has gained momentous attention as a valuable bio-based monomer and a potential alternative to the current petrobased polyol for synthesizing polyurethane due to the presence of inherent hydroxyl group. In spite of its huge potentiality very little has been reviewed regarding the development of polyurethane from castor oil. This review thus highlights the recent trends and development in the field of polyurethane and its nanocomposite based on castor oil including its biodegradability and weatherability studies. Further, this review also provides an insight regarding the utilization of castor oil based polyurethane and its nanocomposite for coating application.  相似文献   

12.
The effects of additives in various vegetable oils on the physical, mechanical, and adhesion properties of carbon black/rubber compounds were studied. Various doses of castor oil and some other oils such as paraffin oil, vegetable oil 1, and cashew nut shell liquid (CNSL) at a fixed dose (1 phr) were used. With an increase in the castor oil content, the modulus, tear strength, and tensile strength increased, whereas the hardness and adhesive strength exhibited little variation up to 1 phr. Beyond 1 phr castor oil, the modulus, tear strength, and hardness decreased, whereas the adhesive and tensile strengths increased up to 2.5–3 phr and then decreased. Therefore, castor oil seemed to behave as a coupling agent up to 1 phr and as a coupling agent and a plasticizer in the range of 1–3 phr; beyond that, the main role of castor oil was plasticization. When various oils at a fixed dose (1 phr) were compared, it was found that the vegetable oils exhibited enhanced properties in comparison with those of paraffin oil. In addition, both of the unsaturated oils (castor oil and vegetable oil 1) enhanced physical and mechanical properties in comparison with saturated paraffin oil. CNSL exhibited the best adhesion properties against mild steel and galvanized iron substrates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1574–1578, 2003  相似文献   

13.
胡波年 《涂料工业》2004,34(8):24-26
研究了改性蓖麻油制备UV光固化涂料。由蓖麻油、环氧丙烯酸树脂UVR6100、光引发剂UVI6990制得的涂料具有优良的光泽、良好的柔韧性、良好的附着力与硬度,且当改性蓖麻油含量为40%时,漆膜性能最为优良。  相似文献   

14.
蓖麻油改性聚醚型水性聚氨酯乳液的性能   总被引:4,自引:0,他引:4  
以聚醚、甲苯二异氰酸酯(TDI)、一缩二乙二醇、蓖麻油为主要原料,二羟甲基丙酸(DMPA)为亲水扩链剂,三乙胺为中和剂制备了稳定的阴离子水性聚氨酯乳液(WPU),研究了NCO/OH摩尔比、DMPA及蓖麻油的加入量对WPU的耐水性、稳定性和力学性能的影响,结果表明:改性后的乳液具有较好的稳定性,适量的蓖麻油可提高胶膜的拉伸强度及耐水性。当聚醚与蓖麻油质量比为7︰3、DMPA为5%、NCO与OH摩尔比为1.3时,WPU综合性能最好。  相似文献   

15.
ABSTRACT

Currently, there is a growing concern for the environment. Several studies of new materials to reduce environmental impact have been carried out by different research groups, and many companies have replaced parts made of fossil sources by renewable materials. The use of polyurethane (PU) derived from castor oil as a matrix for composite materials and adhesives is one example. Hence, the present work aims to compare the numerical and experimental analyses of castor oil PU and epoxy resin not only as a matrix of composite materials, but also as an adhesive of bonded joints. The joint coupons were manufactured by using castor oil PU-glass fibre and epoxy-glass fibre as adherents, which were bonded by epoxy or castor oil PU. Thus, four combinations of adherents and adhesives were investigated. Specimens with identical geometry were used in all tests, which were based on guidelines for single lap bonded joints. Computational simulations via Finite Element Method were performed for predictions of the adhesive layer stresses and strength. In addition, a material model is proposed to predict the failure of the adhesive layer. The experimental and numerical results showed that PU derived from castor oil has good mechanical performance, making this material a feasible alternative for bonded joints, mostly nowadays when environment is a major concern.  相似文献   

16.
Several classical catalytic systems for the transesterification reaction have been used to produce FA ethyl esters (FAEE) from castor and cottonseed oils The effects of the amount and nature of the catalyst, and of the reaction temperature, on the yields of FAEE were determined. The most efficient transesterification of castor oil was achieved in the presence of methoxide and acid catalysts, whereas for cottonseed oil, which has a composition that is much more similar to most vegetable oils than is castor oil, the highest yields of FAEE were obtained following base-catalysed ethanolysis.  相似文献   

17.
蓖麻油基下游产物及蓖麻油增塑剂的研究及其应用进展   总被引:1,自引:0,他引:1  
随着全球化石资源消耗量的不断剧增, 能源危机问题引起了广泛的关注。在植物资源能源化的利用中, 以蓖麻油为原料开发高附加值下游产品已成为研究热点。本文介绍了国内外蓖麻油基下游产品的制备方法、产品性能及应用领域等方面。回顾了脱水蓖麻油、酯交换蓖麻油、环氧化蓖麻油、蓖麻油基聚氨酯等下游产物的制备与应用性能研究。简述了蓖麻油基增塑剂的种类及应用领域, 具体分析了环氧乙酰蓖麻油酸甲酯的制备方法及产品特性。提出了在我国蓖麻油基增塑剂的生产过程中反应温度、催化剂用量等因素影响环氧基团稳定性的问题, 指出目前我国催化合成蓖麻油基增塑剂的趋势和发展方向。  相似文献   

18.
Semi-interpenetrating networks have been produced from castor oil and poly(ethylene terephthalate) (PET). Bond interchange between PET and castor oil plays a major role in the development of initial miscibility, also affecting morphology and chemical structure. Microheterogeneous morphology is developed for materials of intermediate composition, which have much greater toughness than the polymers from which they were made.  相似文献   

19.
The crystallization of poly(ethylene terephthalate) (PET) in blends with naturally functionalized triglyceride oils and their networks has been investigated. Crystallization kinetics of PET in the presence of small amounts of castor oil is improved, both in cooling from the melt state, and in heating from the glassy state. In conjunction with the nucleating agent sodium benzoate, either chemically bonded to castor oil or as a simple mixture, even greater enhancements of crystallization are observed. The PET crystallinity in semi-IPNs and blends of low to intermediate castor oil-HMDI polyurethane content are higher than that of neat PET (on a per gram of PET basis). Crystallinity in compositions with a high triglyceride oil network content is greatly affected by the presence of the network, with large melting point depressions, and loss in overall crystallinity. In cases where the triglyceride oil network is completely formed in a miscible melt with PET, the PET is unable to crystallize on cooling, resulting in amorphous semi-IPNs. Plasticization due to the oil, nucleation from added agents, bond interchange reactions between the oil and the PET, overall chemical composition, and the presence of a triglyceride oil network are found to have a controlling influence over the type and extent of PET crystallinity in the compositions. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Castor oil and its derivatives are widely used as a chemical feedstock for production of lubricants and greases, engineering plastics, plasticizers and surfactants. It also has wide application in consumer goods such as lipstick, deodorants and medicinal uses. Due to concerns about the possible presence of the ricin toxin in the oil, we have tested a collection of castor oils processed using different approaches, including cold‐pressed, US Pharmaceutical (USP) grade, and neutralized oils. Water soluble proteins were extracted from oil samples into phosphate‐buffered saline containing 0.05 % bovine serum albumin (PBSB) and analyzed for potential ricin contamination by ELISA. Our results indicate that only the cold‐pressed castor oil contained measurable levels of the toxin, estimated to be 35 ± 13 μg/l. A normal oral dose of castor oil for laxative use is 14 ml, so even cold‐pressed castor oil would be well below the toxic level of 1–5 μg/kg body weight. However, the presence of the toxin indicates that other soluble proteins, including allergens, may be present in cold‐pressed castor oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号