共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
理论上已经证明PSO算法用所有微粒的当前位置与全体最好位置相同时算法停止作为收敛准则是有缺陷的,不能保证全局收敛。而已经证明模拟退火算法依概率1收敛于全局最优解集,因此可将模拟退火算法作为PSO算法的收敛判据。将模拟退伙算法和微利群优化算法结合起来,保证PSO算法的全局收敛性,提高了收敛的速度和效率。实验结果证明了其有效性。 相似文献
4.
针对微粒群算法在搜索过程中粒子容易失去多样性而陷入局部最优且搜索速度较慢的缺陷,提出了一种基于高斯分布和模拟退火算法的免疫微粒群算法,该算法借助高斯分布和模拟退火的有关机理,分别进行免疫接种和免疫选择的操作。使用常用的基准函数对算法进行了仿真验证工作,通过与全局微粒群优化算法、变惯性权值微粒群优化算法的对比表明,免疫微粒群优化算法(IPSO)在搜索速度和全局寻优方面具有一定的优势。 相似文献
5.
微粒群算法是近年来兴起的一种智能优化算法,而算法参数是影响算法性能和效率的关键,本文对微粒群算法的几个重要参数进行了深入的仿真分析,最终得出了能够保证算法收敛并具有一定指导性和有意义的结论。 相似文献
6.
7.
通过引入模拟退火算法来保证PSO的全局收敛性,在群体最优信息陷入停滞时引入位置逃逸机制保持前期搜索速度快的特性。仿真结果表明本算法不但具有好的全局收敛性,而且有好的收敛速度。 相似文献
8.
9.
10.
为了避免微粒群算法存在的过早收敛问题, 在ARPSO的基础之上, 提出了一个简单的种群多样性度量函数和微粒最好飞行方向的概念, 引入了变异策略, 从而实现了一种改进的吸引扩散微粒群算法MARPSO, 并从理论上分析了MARPSO的局部收敛性和全局收敛性. 对四个经典函数进行了仿真测试, 测试结果表明: 与基本微粒群算法BPSO和ARSPO相比, 该算法能够有效的提高种群多样性, 并且具有较高的收敛速度. 相似文献
11.
12.
针对模拟退火(simulated annealing,SA)算法收敛速度慢,随机采样策略缺乏记忆能力,算法内在的串行性使其具有并行化问题依赖等缺点,提出了基于粒子群优化(particle swarm optimization,PSO)算法的并行模拟退火算法。该算法利用粒子群优化算法中个体的记忆功能引导算法在解空间中开展精细搜索,在反向学习算法基础上设计新的反向转动操作机制增加了算法的多样性,借助PSO的天然并行性克服了SA的并行问题依赖性,并在集群上实现了多Agent协同进化的改进算法。对Toy模型的蛋白质结构预测问题进行了仿真实验,结果表明该算法能有效提高求解问题的质量和效率。 相似文献
13.
一种模拟退火和粒子群混合优化算法 总被引:2,自引:1,他引:2
针对粒子群优化算法(PSO)容易陷入局部极值点、进化后期收敛慢和优化精度较差等缺点.把模拟退火技术(SA)引入到PSO箅法中,提出了一种混合优化算法.混合优化算法在各温度下依次进行PSO和SA搜索,是一种两层的串行结构.由于PSO提供了并行搜索结构,所以,混合优化算法使SA转化成并行SA算法.SA的概率突跳性保证了种群的多样性,从而防止PSO算法陷入局部极小.混合优化算法保持了PSO算法简单容易实现的特点,改善了算法的全局优化能力,提高了算法的收敛速度和计算精度.仿真结果表明,混合优化算法的优化性能优于基本PSO算法. 相似文献
14.
采用了一种模拟退火思想的粒子群算法与最大类间方差法相结合的快速阈值分割法对图像进行分割。用粒子群优化算法来搜索阈值向量,每个粒子代表一个可行的阈值向量,通过粒子间的协作来获得最优阈值。为了提高收敛速度,把模拟退火的思想应用在粒子群算法中,最后仿真结论表明,该方法在继承标准粒子群算法原理简单、易于实现、协同搜索等优点的同时,还避免了标准粒子群算法的收敛速度慢问题,有更强的寻优能力,得到理想的结果的同时计算量大大减少。权衡分割精度和计算效率两个方面,文中方法不失为一种实用有效的图像分割算法。 相似文献
15.
16.
粒子群优化的两种改进策略 总被引:26,自引:1,他引:25
粒子群优化方法(particle swarm optimization,PSO)是由Kennedy和Eberhart于1995年提出的,并成功应用于各类优化问题.通过对PSO方法深入分析,把模拟退火和分工两种机制引入到PSO方法中,提出了模拟退火粒子群优化(PSOwSAPSO with simulated annealing)和有分工策略的粒子群优化(PSOwDOWPSO with division of work),两种不同改进方法,详细阐述了这两种方法的主要思想.测试结果表明,这两种改进方法能够克服传统PSO方法中的不足,增强了粒子群的优化能力. 相似文献
17.
基于模拟退火的粒子群优化算法 总被引:48,自引:6,他引:48
粒子群优化算法是一类简单有效的随机全局优化技术。该文把模拟退火思想引入到具有杂交和高斯变异的粒子群优化算法中,给出了一种基于模拟退火的粒子群优化算法。该算法基本保持了粒子群优化算法简单容易实现的特点,但改善了粒子群优化算法摆脱局部极值点的能力,提高了算法的收敛速度和精度。四个基准测试函数的仿真对比结果表明,该算法不仅增强了全局收敛性,而且收敛速度和精度均优于粒子群优化算法。 相似文献
18.
19.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。 相似文献
20.
提出了一种新的基于粒子群和模拟退火的聚类算法。每个粒子作为聚类问题的一个可行解组成粒子群,粒子的位置由聚类中心向量表示。为避免粒子群陷入局部最优解,结合聚类问题的实际特点,提出了利用模拟退火的概率突跳性的两个解决方案。实验结果表明,新算法增强了全空间的搜索能力,性能优于粒子群算法和传统的K-means算法,具有较好的收敛性,是一种有效的聚类算法。 相似文献