首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 μm and 150 μm diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems.  相似文献   

2.
Volumetric ultrasound imaging using 2-D CMUT arrays   总被引:5,自引:0,他引:5  
Recently, capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a candidate to overcome the difficulties in the realization of 2-D arrays for real-time 3-D imaging. In this paper, we present the first volumetric images obtained using a 2-D CMUT array. We have fabricated a 128 x 128-element 2-D CMUT array with through-wafer via interconnects and a 420-microm element pitch. As an experimental prototype, a 32 x 64-element portion of the 128 x 128-element array was diced and flip-chip bonded onto a glass fanout chip. This chip provides individual leads from a central 16 x 16-element portion of the array to surrounding bondpads. An 8 x 16-element portion of the array was used in the experiments along with a 128-channel data acquisition system. For imaging phantoms, we used a 2.37-mm diameter steel sphere located 10 mm from the array center and two 12-mm-thick Plexiglas plates located 20 mm and 60 mm from the array. A 4 x 4 group of elements in the middle of the 8 x 16-element array was used in transmit, and the remaining elements were used to receive the echo signals. The echo signal obtained from the spherical target presented a frequency spectrum centered at 4.37 MHz with a 100% fractional bandwidth, whereas the frequency spectrum for the echo signal from the parallel plate phantom was centered at 3.44 MHz with a 91% fractional bandwidth. The images were reconstructed by using RF beamforming and synthetic phased array approaches and visualized by surface rendering and multiplanar slicing techniques. The image of the spherical target has been used to approximate the point spread function of the system and is compared with theoretical expectations. This study experimentally demonstrates that 2-D CMUT arrays can be fabricated with high yield using silicon IC-fabrication processes, individual electrical connections can be provided using through-wafer vias, and flip-chip bonding can be used to integrate these dense 2-D arrays with electronic circuits for practical 3-D imaging applications.  相似文献   

3.
Forward-viewing ring arrays can enable new applications in intravascular and intracardiac ultrasound. This work presents compelling, full-synthetic, phased-array volumetric images from a forward-viewing capacitive micromachined ultrasonic transducer (CMUT) ring array wire bonded to a custom integrated circuit front end. The CMUT ring array has a diameter of 2 mm and 64 elements each 100 microm x 100 microm in size. In conventional mode, echo signals received from a plane reflector at 5 mm had 70% fractional bandwidth around a center frequency of 8.3 MHz. In collapse mode, 69% fractional bandwidth is measured around 19 MHz. Measured signal-to-noise ratio (SNR) of the echo averaged 16 times was 29 dB for conventional operation and 35 dB for collapse mode. B-scans were generated of a target consisting of steel wires 0.3 mm in diameter to determine resolution performance. The 6 dB axial and lateral resolutions for the B-scan of the wire target are 189 microm and 0.112 radians for 8 MHz, and 78 microm and 0.051 radians for 19 MHz. A reduced firing set suitable for real-time, intravascular applications was generated and shown to produce acceptable images. Rendered three-dimensional (3-D) images of a Palmaz-Schatz stent also are shown, demonstrating that the imaging quality is sufficient for practical applications.  相似文献   

4.
5.
Forward-viewing CMUT arrays for medical imaging   总被引:3,自引:0,他引:3  
This paper reports the design and testing of forward-viewing annular arrays fabricated using capacitive micromachined ultrasonic transducer (CMUT) technology. Recent research studies have shown that CMUTs have broad frequency bandwidth and high-transduction efficiency. One- and two-dimensional CMUT arrays of various sizes already have been fabricated, and their viability for medical imaging applications has been demonstrated. We fabricated 64-element, forward-viewing annular arrays using the standard CMUT fabrication process and carried out experiments to measure the operating frequency, bandwidth, and transmit/receive efficiency of the array elements. The annular array elements, designed for imaging applications in the 20 MHz range, had a resonance frequency of 13.5 MHz in air. The immersion pulse-echo data collected from a plane reflector showed that the devices operate in the 5-26 MHz range with a fractional bandwidth of 135%. The output pressure at the surface of the transducer was measured to be 24 kPa/V. These values translate into a dynamic range of 131.5 dB for 1-V excitation in 1-Hz bandwidth with a commercial low noise receiving circuitry. The designed, forward-viewing annular CMUT array is suitable for mounting on the front surface of a cylindrical catheter probe and can provide Doppler information for measurement of blood flow and guiding information for navigation through blood vessels in intravascular ultrasound imaging.  相似文献   

6.
State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.  相似文献   

7.
Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.  相似文献   

8.
This paper describes a unique crossed electrode array for real-time volume ultrasound imaging. By placing orthogonal linear array electrode patterns on the opposite sides of a hemispherically shaped composite transducer substrate, a 2D array can be fabricated using a small fraction of the elements required for a traditional 2D array. The performance of the array is investigated using a computer simulation of the radiation pattern. We show that by using a 288-element crossed electrode pattern it is possible to collect large field of view volume images (60deg times 60degsector) at real-time frame rates (>20 volume images/s), with image contrast and resolution comparable to what can be obtained using a conventional 128-element linear phased array.  相似文献   

9.
A commercially available fiber-optic Raman probe was modified for high-resolution spectral Raman imaging using a 350 microm diameter optical fiber image guide coupled to a dimension-reduction imaging array (DRIA). The DRIA comprised 672 optical fibers, arranged as a square array (21 x 32 fibers) on one end and a linear array (672 x 1 fibers) on the other. An imaging spectrograph was used with the DRIA to acquire multi-wavelength Raman images from -250 to 1800 cm(-1) at a spectral resolution of approximately 5 cm(-1). The utility of this technique for in situ and remote Raman imaging is demonstrated by monitoring the polymerization of a model polymer, dibromostyrene (DBS), while simultaneously measuring the Raman Stokes/ anti-Stokes ratio as a function of sample heating time, over a sample area of approximately 4 x 1.6 mm.  相似文献   

10.
用脉动阵列实现实时波前复原处理   总被引:2,自引:0,他引:2  
在自适应光学系统中,波前复原是波前处理中运算量较大的部分,其运算速度直接影响波前处理机的实时性和系统的控制带宽。根据波前复原算法的特点,提出了用脉动阵列实现基于FPGA的实时波前复原处理方法,采用流水和并行处理技术,提高系统的吞吐率;极大地提高了运算速度。该方法实时性强,模块化程度高。  相似文献   

11.
A novel hardware design and preliminary experimental results for photoacoustic imaging are reported in this paper. This imaging system makes use of an infrared-transparent capacitive micromachined ultrasonic transducer (CMUT) chip for ultrasound reception and illuminates the image target through the CMUT array. The cascaded arrangement between the light source and transducer array allows for a more compact imager head and results in more uniform illumination. Taking advantage of the low optical absorption coefficient of silicon in the near infrared spectrum as well as the broad acoustic bandwidth that CMUTs provide, an infrared-transparent CMUT array has been developed for ultrasound reception. The center frequency of the polysilicon-membrane CMUT devices used in this photoacoustic system is 3.5 MHz, with a fractional bandwidth of 118% in reception mode. The silicon substrate of the CMUT array has been thinned to 100 μm and an antireflection dielectric layer is coated on the back side to improve the infrared-transmission rate. Initial results show that the transmission rate of a 1.06-μm Nd:Yag laser through this CMUT chip is 12%. This transmission rate can be improved if the thickness of silicon substrate and the thin-film dielectrics in the CMUT structure are properly tailored. Imaging of a metal wire phantom using this cascaded photoacoustic imager is demonstrated.  相似文献   

12.
An experimental pulse-echo imager was developed for the purpose of reducing speckle in ultrasonic images. The system utilized a 64-element spherically focused segmented annuli array receiver with a common transmitter. Compounded images were formed using subapertures of varying size, shape, and overlap, and the speckle and resolution characteristics of the final images were observed. A pointlike scatterer was imaged to determine the resolution, point spread function, and sensitivity of the system along with a new measure called the resolution cell size. The response of the system was also simulated for comparisons. It was found that lateral resolution, and resolution cell sizes only gradually increased with a decrease in subaperture size and system sensitivity was not greatly diminished. Incoherent summation of signals from small groups of elements decreased the speckle noise by a factor of four while maintaining enough resolution to improve the image quality as measured by the CSR/d by a factor of almost two.  相似文献   

13.
For the first time, the feasibility of inducing and imaging thermal strain using an ultrasound imaging array is demonstrated. A commercial ultrasound scanner was used to heat and image a gelatin phantom with a cylindrical rubber inclusion. The inclusion was successfully characterized as an oil-bearing material using thermal strain imaging.  相似文献   

14.
In this study, a 64-element, 1.15-mm diameter annular-ring capacitive micromachined ultrasonic transducer (CMUT) array was characterized and used for forward-looking intravascular ultrasound (IVUS) imaging tests. The array was manufactured using low-temperature processes suitable for CMOS electronics integration on a single chip. The measured radiation pattern of a 43 X 140-microm2 array element depicts a 40 degrees view angle for forward-looking imaging around a 15-MHz center frequency in agreement with theoretical models. Pulse-echo measurements show a -10-dB fractional bandwidth of 104% around 17 MHz for wire targets 2.5 mm away from the array in vegetable oil. For imaging and SNR measurements, RF A-scan data sets from various targets were collected using an interconnect scheme forming a 32-element array configuration. An experimental point spread function was obtained and compared with simulated and theoretical array responses, showing good agreement. Therefore, this study demonstrates that annular-ring CMUT arrays fabricated with CMOS-compatible processes are capable of forward-looking IVUS imaging, and the developed modeling tools can be used to design improved IVUS imaging arrays.  相似文献   

15.
16.
黄树枝  王宏  王艳 《声学技术》2003,22(4):227-229
文章介绍一种研制成功的自由溢流式质量负载压电圆环阵,该圆环阵由数个短圆环同轴布阵而成。圆环阵的基元(短圆环)是一种开口的切向极化短圆环,短圆环由质量件和压电组件嵌拼而成,这种结构可以有效降低圆环的径向谐振频率;通过调节圆环阵的径长比,可以获得合适的液腔谐振频率,从而有效降低圆环阵的下限频率,拓宽圆环阵的工作带宽,减小发送电压响应起伏。该圆环阵具有低频、宽带、高发送电压响应和大工作深度等优点。  相似文献   

17.
Ultrasonic imaging using full-matrix capture, e.g., via the total focusing method (TFM), has been shown to increase angular inspection coverage and improve sensitivity to small defects in nondestructive evaluation. In this paper, we develop a Fourier-domain approach to full-matrix imaging based on the wavenumber algorithm used in synthetic aperture radar and sonar. The extension to the wavenumber algorithm for full-matrix data is described and the performance of the new algorithm compared with the TFM, which we use as a representative benchmark for the time-domain algorithms. The wavenumber algorithm provides a mathematically rigorous solution to the inverse problem for the assumed forward wave propagation model, whereas the TFM employs heuristic delay-and-sum beamforming. Consequently, the wavenumber algorithm has an improved point-spread function and provides better imagery. However, the major advantage of the wavenumber algorithm is its superior computational performance. For large arrays and images, the wavenumber algorithm is several orders of magnitude faster than the TFM. On the other hand, the key advantage of the TFM is its flexibility. The wavenumber algorithm requires a regularly sampled linear array, while the TFM can handle arbitrary imaging geometries. The TFM and the wavenumber algorithm are compared using simulated and experimental data.  相似文献   

18.
We have tested a ring imaging Cherenkov counter with readout of the projection chamber type. A specific detector response of N0 = 80 cm?1 was measured which corresponds to 8 photoelectrons per event in 1.60 m long nitrogen radiator. The resolution of the ring radius was measured to be Δr/r = 3.6%. The crosstalk between neighboring wires due to photons generated in the avalanche process was estimated to contribute up to 50% per hit. It was reduced considerably by inserting shielding walls between the wires and by adding C2H6 or iC4H10 to the CH4-TMAE gas mixture.  相似文献   

19.
For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse echo operation, the average - 6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/pHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.  相似文献   

20.
Conventional diagnostic ultrasound scanners are bulky and require significant amounts of electrical power during operation. Reducing the size, weight, and consumption of electrical power is made easier through the use of highly integrated compact transmit and receive electronics that may be incorporated in the transducer handle. This necessitates the use of low voltage transmitters and low power receive preamplifiers. Conventional scanners typically use approximately 100-V pulses during transmit; therefore, decreasing the transmit voltage to 15 V decreases the transmit sensitivity. Conventional receive electronics that are located at the scanner degrade the received signal-to-noise ratio (SNR) because the array element cannot efficiently drive the coaxial cable. Transmit sensitivity and received SNR can be radically improved using a multilayer/single-layer hybrid array making integration of electronics into the transducer handle more feasible. In this paper, we discuss the design, fabrication, and testing of a 5-MHz hybrid linear array. The hybrid array included 16 multilayer transmit elements (10 Omega impedance) and 24 single-layer receive elements at a half wavelength element pitch. Low voltage transmitters with an output resistance of 7 Omega and high impedance JFET preamplifiers using 15 V for biasing were located adjacent to the hybrid array in the transducer handle. The transmit sensitivity and received SNR of the hybrid array were compared with a conventional array using 50-Omega transmitters and receive preamplifiers at the scanner. The transmit sensitivity improved by 12.8 dB, and the received SNR improved by 7.8 dB, yielding an overall improvement of 20.6 dB, which compared well with predictions from the KLM model. Images of phantoms and in vivo images of the kidney obtained with the Siemens Model 1200 phased array system showed the increased SNR using the hybrid array. Estimates of penetration in tissue mimicking phantoms (alpha=0.5 dB/(cm MHz)) improved by 7 cm compared with the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号