首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nam S  Han J  Do YR  Kim H  Yim S  Kim Y 《Nanotechnology》2011,22(46):465403
We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.  相似文献   

2.
A novel technique for the fabrication of photonic crystal (PC) nanocavities coupled with colloidal nanocrystals is presented. A waveguiding resist membrane embedding highly emitting dot-in-a-rod nanocrystals was patterned through e-beam lithography and released through wet etching process. The proposed approach makes the PC structure independent of fabrication imperfections induced by etching steps. Micro-photoluminescence spectra revealed degenerated resonant modes (Q-factor approximately 700) whose fabrication-induced spectral splitting is comparable to the full width at half-maximum of the peaks. Active nanocavities tunable from visible to infrared spectral range on GaAs or Si substrates can be easily implemented by this technique.  相似文献   

3.
Sun Y  Yu X  Nguyen NT  Shum P  Kwok YC 《Analytical chemistry》2008,80(11):4220-4224
In this paper, we present a long path-length axial absorption detection method in photonic crystal fibers (PCFs). A PCF, also called a holey fiber or microstructured fiber, is an optical fiber which consists of a periodic array of very tiny and closely spaced air holes on the scale of 1 microm running through the whole length of the fiber. Here, a PCF with porous microstructures was used as a sample container for absorption detection. Light was guided by total internal reflection and propagated axially in the air holes of PCFs that were filled with the solution of the absorbing species by vacuum pumping. Excellent linearity was obtained for different sample concentrations, and high sensitivity was achieved due to the long optical path length. In addition, as the dimension of the PCF is small, the sample volume is greatly reduced. Moreover, due to its robustness, the PCF can be coiled up to keep the footprint small, making it suitable for microchip absorption detection. It can be widely used for both off-chip and on-chip detection of absorbing species, such as ions, alkaloids, and biomolecules.  相似文献   

4.
A photonic crystal (PC) surface is demonstrated as a high-sensitivity platform for detection of a panel of 21 cancer biomarker antigens using a sandwich enzyme-linked immunosorbent assay (ELISA) microarray format. A quartz-based PC structure fabricated by nanoimprint lithography, selected for its low autofluorescence, supports two independent optical resonances that simultaneously enable enhancement of fluorescence detection of biomarkers and label-free quantification of the density of antibody capture spots. A detection instrument is demonstrated that supports fluorescence and label-free imaging modalities, with the ability to optimize the fluorescence enhancement factor on a pixel-by-pixel basis throughout the microarray using an angle-scanning approach for the excitation laser that automatically compensates for variability in surface chemistry density and capture spot density. Measurements show that the angle-scanning illumination approach reduces the coefficient of variation of replicate assays by 20-99% compared to ordinary fluorescence microscopy, thus supporting reduction in limits of detectable biomarker concentration. Using the PC resonance, biomarkers in mixed samples were detectable at the lowest concentrations tested (2.1-41 pg/mL), resulting in a three-log range of quantitative detection.  相似文献   

5.
An n=-1 flat lens based on photonic crystal semiconductor technology is evaluated for infrared detection purposes. The idea consists in exploiting the backscattered waves of an incident plane wave impinging on a target placed in the focal region of a flat lens. It is shown that subwavelength detection of micronic dielectric targets can be obtained at 1.55?μm using the double focus of reflected waves induced by negative refraction. Complex relations among the intrinsic nature, the shape and size of the target, and detection efficiency are interpreted in terms of target eigenmode excitation. Reflectivity is modulated by the intrinsic mode nature, transverse, circular, or longitudinal, with an enhancement of the detection sensitivity in the case of whispering-gallery modes. It is believed that such a study paves the way to the definition of original noninvasive infrared sensors.  相似文献   

6.
The directed growth of III-V nanopillars is used to demonstrate bottom-up photonic crystal lasers. Simultaneous formation of both the photonic band gap and active gain region is achieved via catalyst-free selective-area metal-organic chemical vapor deposition on masked GaAs substrates. The nanopillars implement a GaAs/InGaAs/GaAs axial double heterostructure for accurate, arbitrary placement of gain within the cavity and lateral InGaP shells to reduce surface recombination. The lasers operate single-mode at room temperature with low threshold peak power density of ~625 W/cm2. Cavity resonance and lasing wavelength is lithographically defined by controlling pillar pitch and diameter to vary from 960 to 989 nm. We envision this bottom-up approach to pillar-based devices as a new platform for photonic systems integration.  相似文献   

7.
Pustai DM  Sharkawy A  Shi S  Prather DW 《Applied optics》2002,41(26):5574-5579
We present a method for tuning a photonic crystal microcavity by modulating the index of refraction of the lattice sites within and surrounding the microcavity. The index of refraction can be actively modulated after infiltrating anisotropic liquid crystals into a two-dimensional photonic crystal lattice of air cylinders in silicon. We analyze the Q-factors and resonance frequencies of a tunable photonic crystal microcavity by considering various methods of index modulation. These tunable cavities are incorporated in a channel drop filter to demonstrate their enhancement of wavelength division multiplexing photonic crystal applications.  相似文献   

8.
A 2D photonic crystal surface with a different period in each lateral direction is demonstrated to detect biomolecules using two distinct sensing modalities. The sensing mechanisms both rely on the generation of a resonant reflection peak at one of two specific wavelengths, depending on the polarization of light that is incident on the photonic crystal. One polarization results in a resonant reflection peak in the visible spectrum to coincide with the excitation wavelength of a fluorophore, while the orthogonal polarization results in a resonant reflection peak at an infrared wavelength which is used for label-free detection of adsorbed biomolecules. The photonic crystal resonance for fluorescence excitation causes enhanced near fields at the structure surface, resulting in increased signal from fluorophores within 100 nm of the device surface. Label-free detection is performed by illuminating the photonic crystal with white light and monitoring shifts in the peak reflected wavelength of the infrared resonance with a high-resolution imaging detection instrument. Rigorous coupled-wave analysis was used to determine optimal dimensions for the photonic crystal structure, and devices were fabricated using a polymer-based nanoreplica molding approach. Fluorescence-based and label-free detection were demonstrated using arrays of spots of dye-conjugated streptavidin. Quantification of the fluorescent signal showed that the fluorescence output from protein spots on the photonic crystal was increased by up to a factor of 35, and deposited spots were also imaged in the label-free detection mode.  相似文献   

9.
We report on the numerical structural optimization of two-dimensional photonic crystal (PhC) power dividers by using two different classes of optimization algorithms, namely, a modified truncated Newton (TN) gradient search as deterministic local optimization scheme and an evolutionary optimization representing the probabilistic global search strategies. Because of the severe accuracy requirements during optimization, the proper PhC device has been simulated by using the multiple-multipole program that is contained in the MaX-1 software package. With both optimizer classes, we found reliable and promising solutions that provide vanishing power reflection and perfect power balance at any specified frequency within the photonic bandgap. This outcome is astonishing in light of the discrete nature inherent in the underlying PhC structure, especially when the optimizer is allowed to intervene only within a very small volume of the device. Even under such limiting constraints structural optimization is not only feasible but has proven to be highly successful.  相似文献   

10.
High-stability erbium-doped photonic crystal fiber source   总被引:1,自引:0,他引:1  
Wu X  Ruan SC  Liu CX  Zhang L 《Applied optics》2012,51(13):2277-2281
A single-pass backward configuration superfluorescent fiber source (SFS) based on erbium-doped photonic crystal fiber (EDPCF) with a high mean wavelength stability was proposed. The EDPCF was used to improve the intrinsic temperature dependence of the SFS. Using the optimal EDPCF length of 24.2 m and pump power of 204 mW, a 20.7 ppm mean wavelength stability of a prototype SFS was demonstrated with increased temperature from -40 °C to 60 °C. The mean wavelength had an ultra stability of 10.3 ppm with increased temperature from -20 °C to 60 °C.  相似文献   

11.
The implementation of a series of optically pumped GaN photonic crystal (PhC) membrane lasers is demonstrated at room temperature. The photonic crystal is composed of a scalene-triangular arrangement of circular holes in GaN. Three defect structures are fabricated for comparing their lasing characteristics with those of perfect PhC. It is observed that all the lasing defect modes have lasing wavelengths very close to the band-edge modes in the perfect PhC structure. Although those lasing modes, including band-edge and defect modes, have different optical pump thresholds, different lasing spectral widths, different quality factors (Q factors), and different polarization ratios, all their polarization distributions show maxima in the directions around one of the hole arrangement axes. The similar lasing characteristics between the band-edge and defect modes are attributed to the existence of extremely narrow partial band gaps for forming the defect modes. Also, the oriented polarization properties are due to the scalene-triangle PhC structure. In one of the defect lasing modes, the lasing threshold is as low as 0.82 mJ cm(-2), the cavity Q factor is as large as 1743, and the polarization ratio is as large as 25.4. Such output parameters represent generally superior lasing behaviors when compared with previously reported implementations of similar laser structures.  相似文献   

12.
13.
We demonstrate a colorimetric glucose recognition material consisting of a crystalline colloidal array embedded within a polyacrylamide-poly(ethylene glycol) (PEG) hydrogel, or a polyacrylamide-15-crown-5 hydrogel, with pendent phenylboronic acid groups. We utilize a new molecular recognition motif, in which boronic acid and PEG (or crown ether) functional groups are prepositioned in a photonic crystal hydrogel, such that glucose self-assembles these functional groups into a supramolecular complex. The formation of the complex results in an increase in the hydrogel cross-linking, which for physiologically relevant glucose concentration blue shifts the photonic crystal diffraction. The visually evident diffraction color shifts across the visible spectral region over physiologically important glucose concentration ranges. These materials respond to glucose at physiological ionic strengths and pH values and are selective in their mode of response for glucose over galactose, mannose, and fructose. Thus, we have developed a new recognition motif for glucose that shows promise for the fabrication of noninvasive or minimally invasive in vivo glucose sensing for patients with diabetes mellitus.  相似文献   

14.
SiO2/CdS光子晶体的制备及其光学性能   总被引:1,自引:0,他引:1  
蔡小梅  陈福义  介万奇 《功能材料》2006,37(8):1201-1203
用化学浴沉淀法(CBD)在SiO2胶体晶体中生长了CdS半导体材料, 并用UV-VIS-NIR光谱仪和荧光光分度计测试了其光学性能.测试结果表明,在SiO2胶体晶体中随着CdS填充量的增加,光子带隙向长波段方向移动且变宽;当发射出的光与基体材料的光子带隙相匹配时,可控制半导体材料的光致发光,同时,可通过控制SiO2胶体颗粒粒经的大小来调节CdS的光致发光性能.  相似文献   

15.
Diamond is an attractive material for photonic quantum technologies because its colour centres have a number of outstanding properties, including bright single photon emission and long spin coherence times. To take advantage of these properties it is favourable to directly fabricate optical microcavities in high-quality diamond samples. Such microcavities could be used to control the photons emitted by the colour centres or to couple widely separated spins. Here, we present a method for the fabrication of one- and two-dimensional photonic crystal microcavities with quality factors of up to 700 in single crystal diamond. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy colour centres, and we measure an intensity enhancement factor of 2.8. The controlled coupling of colour centres to photonic crystal microcavities could pave the way to larger-scale photonic quantum devices based on single crystal diamond.  相似文献   

16.
We developed a polymerized crystalline colloidal array (PCCA) photonic crystal sensing material that senses the organophosphorus compound parathion at ultratrace concentrations in aqueous solutions. A periodic array of colloidal particles is embedded in a hydrogel network with a lattice spacing such that it Bragg diffracts visible light. The molecular recognition agent for the sensor is the enzyme acetylcholinesterase (AChE), which binds organophosphorus compounds irreversibly, creating an anionic phosphonyl species. This charged species creates a Donnan potential, which swells the hydrogel network, which increases the embedded particle array lattice spacing and causes a red-shift in the wavelength of light diffracted. The magnitude of the diffraction red-shift is proportional to the amount of bound parathion. These AChE-PCCAs act as dosimeters for parathion since it irreversibly binds. Parathion concentrations as low as 4.26 fM are easily detected.  相似文献   

17.
We report a hybrid approach for photonic systems that combines chemically synthesized single nanowire emitters with lithographically defined photonic crystal and racetrack microresonator structures. Finite-difference time-domain calculations were used to design nanowire photonic crystal structures where the photonic band gap overlaps the electronic band gap of the nanowire. Photoluminescence (PL) images of cadmium sulfide (CdS) nanowire photonic crystal structures designed in this way demonstrate localized emission from engineered defects and light suppression in regions of the photonic crystal. PL spectroscopy studies of defect-free nanowire photonic crystal structures further demonstrate the photonic band gap or stop band that spans most of the CdS band edge emission spectrum. In addition, single CdS nanowire-racetrack microresonator structures were fabricated, and PL imaging and spectroscopy measurements show good coupling of the nanowire to the microcavity including efficient feedback and amplified spontaneous emission. These hybrid structures exploit unique strengths of bottom-up and top-down approaches and thereby open new opportunities in nanophotonics from efficient and localized light sources to integrated optical processing.  相似文献   

18.
The modal cutoff of square-lattice photonic crystal fibers with a finite number of air-hole rings has been accurately investigated to our knowledge for the first time. By analyzing the leaky behavior of the second-order mode, we have obtained a phase diagram that describes the regions of single-mode and multimode operation as well as the endlessly single-mode regime. Furthermore, starting from these results, we have obtained the cutoff normalized frequency according to two different formulations of the V parameter previously adopted for fibers with a triangular lattice. A final comparison of the cutoff properties of fibers characterized by a square lattice and a triangular lattice has been carried out.  相似文献   

19.
Vertical-cavity surface-emitting resonances in photonic crystal films   总被引:1,自引:0,他引:1  
It is shown that thin films of dielectric, etched through with a suitably chosen lattice of holes, can support surface-emitting vertical resonances with very-high-cavity Q factors (approximately 10(5) in the case of Al(x)GaAs(1-x) on oxidized AlyGaAs1-y). A Bloch-wave expansion is used to develop a complete vector-field analysis of these resonances and to reveal their underlying physics. Since they do not require multilayer mirrors, such resonators are a practical and simple replacement for conventional vertical-cavity surface-emitting laser structures. Other applications include wavelength-division-multiplexing components and highly sensitive gas detectors.  相似文献   

20.
The temperature dependence of the optical transmission spectrum of a one-dimensional multilayer photonic crystal structure with a central defect layer has been studied. The defect was represented by a nematic liquid crystal (5CB) layer with a homeotropic orientation. It is shows that the defect modes exhibit a 10-nm spectral shift due to a change in the refractive index of the liquid crystal in the course of heating-induced transition to the isotropic phase. A comparison of the experimental data to the results of heating-induced transition to the isotropic phase. A comparison of the experimental data to the results of numerical analysis shows the importance of allowance for the decay of defect modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号