首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe recent developments in the synthesis of semiconductor nanoparticles, which lead to a substantial improvement of the luminescence quantum efficiency. Concerning a theoretical model for the growth of an ensemble of nanoparticles, the highest quantum efficiencies are achieved in particles that grow under conditions of a rapid exchange of monomers at the particle surface, leading to a smooth surface structure. Selective etching, core-shell formation and doping of nanoparticles are also discussed as fluorescence-enhancing preparative techniques. Examples of self-assembly of almost-uniformly-sized nanoparticles are given, which result in two-dimensional and three-dimensional superlattices, colloidal crystals and crystalline structures built-up from particles of different sizes. Finally, the self-assembled oriented attachment of quasi-spherical ZnO nanoparticles onto single-crystalline nanorods is presented.  相似文献   

2.
The self-assembly of sterically stabilized colloidal copper sulfide nanodisks, 14-20 nm in diameter and 5-7 nm thick, was studied. The nanodisks were observed by electron microscopy and small-angle X-ray scattering to form columnar arrays when evaporated as thin films from concentrated dispersions. These superstructured nanomaterials might give rise to technologically useful properties, such as anisotropic electrical transport and electrorheological and optical properties.  相似文献   

3.
A novel fabrication method for optical thin film filters based on the self-organization of alternating layers of colloidal gold and silica nanoparticles (NP) is reported. The filter is designed to work in the deep-UV to visible spectral range. The spectral absorption peaks are tuned by three parameters: the organic capping ligand of the gold NPs (citrate, chitosan, poly (diallyl-dimethylammonium)-chloride or PDDA); the capping environment (bare, chitosan, or PDDA) of the silica NPs and the thickness of the film. Precise control of the transmission color (less than 1% color distance per layer), is achieved by changing the film thickness. Exploitation of the self-assembly process should lead to the facile production of highly reliable large area thin film optical filters at considerably lower costs.  相似文献   

4.
Titov AV  Král P 《Nano letters》2008,8(11):3605-3612
We model the self-assembly of superlattices of colloidal semiconducting nanorods horizontally and vertically oriented on material substrates. The models include van der Waals and Coulombic coupling between nanorods with intrinsic electric dipoles and their coupling to the substrates. We also investigate the effect of external electric fields on the self-assembly processes. Our theoretical predictions for stable self-assembled superlattices agree well with the available experimental data.  相似文献   

5.
A number of "top-down" lithographic and "bottom-up" self-assembly methods have been developed to fabricate three-dimensional (3D) nanostructures to support the recent advances in nanotechnology. But they are limited by a number of factors such as fabrication cost, pattern resolution, and/or flexibility of geometry. Here we present a 3D nanolithography process that utilizes self-assembled nanospheres to create a periodic array of focal spots, which are then replicated across multiple depth in a transparent medium according to the Talbot effect. The Talbot field then exposes a pattern onto the underlying photoresist, recording the 3D intensity distribution. We have demonstrated designable complex 3D periodic structures with 80 nm minimum feature size, roughly one-fourth of the operating wavelength. This approach combines 2D colloidal self-assembly and 3D phase lithography, is robust, cost-effective, and widely applicable to nanoscale research and manufacturing.  相似文献   

6.
A reversible locking mechanism is established for the generation of anisotropic nanostructures by a magnetic field pulse in liquid matrices by balancing the thermal energy, short-range attractive and long-range repulsive forces, and dipole-dipole interactions using a specially tailored polymer shell of nanoparticles. The locking mechanism is used to precisely regulate the dimensions of self-assembled magnetic nanoparticle chains and to generate and disintegrate three-dimensional (3D) nanostructured materials in solvents and polymers.  相似文献   

7.
We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays.  相似文献   

8.
We demonstrate here a novel method for self-assembling in dimensional alignment the alkoxy-capped silicon nanoparticles synthesized through a room-temperature chemical route. The alkoxy-capped silicon nanoparticles were prepared via a reduction of silicon tetrachloride with sodium-naphthalide and subsequent surface capsulation with 1-octanol monolayers. In the present method, a sublimation process, which was employed as a final purification process for removing the residual naphthalene, influenced significantly on the final morphology of the resultant nanoparticles. Scanning transmission electron microscope (STEM) confirmed the spherical nanoparticles on a holey carbon grid after sublimation process, while only the fibril-like morphology just before sublimation process. In the former sample, the resultant particle size was measured by STEM to be about 9.5 nm +/- 3.4 nm. On the other hand, in the latter sample, the fibril-like structures were shaped by self-assembled silicon nanoparticles in dimensional alignment. The diameters and lengths of the fibril-like assemblies were approximately measured to be 10 to 20 nm and over 5 microm, respectively.  相似文献   

9.
Huang  Xiaofeng  Song  Liujun  Jiang  Xiang  Zhang  Xinya 《Journal of Materials Science》2022,57(14):7400-7415
Journal of Materials Science - Highly monodisperse, tetrahedral colloidal particles featuring four spherical dimples arranged symmetrically one per face were synthesized via classical seeded...  相似文献   

10.
Monodisperse gold nanoparticles protected by small organic molecules or by macromolecules with different sizes and shapes are widely used as a precursor material in various applications of gold nanotechnology. However, their preparation is still a formidable task. In this paper the use of photochemically assisted syntheses of monodisperse gold nanoparticles is summarized and some preparations by the authors’ group are introduced. These include spherical and rod-like particles, bimetallic composite nanoparticles, and syntheses using complex intramolecular photoreduction to generate the reducing agent.  相似文献   

11.
Jeong E  Kim K  Choi I  Jeong S  Park Y  Lee H  Kim SH  Lee LP  Choi Y  Kang T 《Nano letters》2012,12(5):2436-2440
Owing to their novel optical properties, three-dimensional plasmonic nanostructures with reduced symmetry such as a nanocrescent and a nanocup have attracted considerable current interest in biophotonic imaging and sensing. However, their practical applications have been still limited since the colloidal synthesis of such structures that allows, in principle, for in vivo application and large-scale production has not been explored yet. To date, these structures have been fabricated only on two-dimensional substrates using micro/nanofabrication techniques. Here we demonstrate an innovative way of breaking symmetry of colloidal plasmonic nanoparticles. Our strategy exploits the direct overgrowth of Au on a hybrid colloidal dimer consisting of Au and polystyrene (PS) nanoparticles without the self-nucleation of Au in an aqueous solution. Upon the overgrowth reaction, the steric crowding of PS leads to morphological evolution of the Au part in the dimer ranging from half-shell, nanocrescent to nanoshell associated with the appearance of the second plasmon absorption band in near IR. Surface-enhanced Raman scattering signal is obtained directly from the symmetry-broken nanoparticles solution as an example showing the viability of the present approach. We believe our concept represents an important step toward a wide range of biophotonic applications for optical nanoplasmonics such as targeting, sensing/imaging, gene delivery, and optical gene regulations.  相似文献   

12.
Colloidal self-assembly is an efficient method to obtain ordered 3D nanostructures. However, it suffers from the drawback that defects are difficult to eliminate in the self-assembled nanostructures. In this report, a method to reduce the defect density is proposed. It has been observed earlier that during self-assembly, the colloidal system goes through a transition state with a higher mobility than the final rigid nanostructure. This offers an opportunity to anneal out defects like vacancies and dislocations. Using in-situ reflectance spectra measurements of a self-assembling system, we demonstrate the feasibility of this transition state annealing method.  相似文献   

13.
We have fabricated a square lattice array of sub-micrometer fluorescent (red and green) polystyrene particles. The particles were each embedded into small pits fabricated on a silicon substrate by electron beam lithography, through the drying process of an aqueous suspension containing equal amounts of the two species. We indexed 0 and 1 for each red and green particle, respectively, and then obtained a one-dimensional bit sequence by the successive reading of the indices in a predetermined manner. We evaluated the randomness of the bit sequence by using the improved FIPS 140-2 statistical test suite. Consequently, we found that the bit sequences do not have any non-randomness. The particle array was obtained by a very simple process, i.e., the drying of a suspension, but the particle distribution pattern was definitely unpredictable and irreproducible, and the number of possible patterns was tremendously large. The signal--i.e., the color of the particle--does not deteriorate within a practical timescale under various conditions, such as in an electric field, in a magnetic field, in air or water, on a solid matrix, and so on, which means that a small tip with the particle pattern can be installed in miscellaneous object, including electronic products, plastic credit cards, currency bills, and so on. Therefore, this particle array is applicable to a nanoscale identification tag or a one-time pad encryption tip.  相似文献   

14.
Self-assembly of molecular units into complex and functional superstructures is ubiquitous in biology. The number of superstructures realized by self-assembly of man-made nanoscale units is also growing. However, assemblies of colloidal inorganic nanocrystals are still at an elementary level, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we show how monodisperse colloidal octapod-shaped nanocrystals self-assemble, in a suitable solution environment, on two sequential levels. First, linear chains of interlocked octapods are formed, and subsequently the chains spontaneously self-assemble into three-dimensional superstructures. Remarkably, all the instructions for the hierarchical self-assembly are encoded in the octapod shape. The mechanical strength of these superstructures is improved by welding the constituent nanocrystals together.  相似文献   

15.
Self-assembly of BaF2 nanoparticles was described. BaF2 nanoparticles were prepared by microemulsion technology. The self-assembly of the particles is spontaneous without coating reagent on the surface or external force being applied during the procedure of sample preparation. XRD examination and ICP data showed the phase purity of the final product; FTIR spectroscopy confirmed that there was no organic species leaved in the product. By depositing one drop of colloid solution containing BaF2 particles on the TEM grid directly, we can get the ring-like self-assembly with larger particles dispersing peripherally to form a ring and smaller particles inside this ring forming circles.  相似文献   

16.
Room temperature synthesis of colloidal platinum nanoparticles   总被引:3,自引:0,他引:3  
Efficient preparation of stable dispersions of platinum nanoparticles from platinous chloride (K2PtCl4) was achieved by simultaneous addition of capping polymer material. The size of platinum nanoparticles was controlled by changing the ratio of concentration of capping polymer material to the concentration of platinum cation used. The morphology of colloidal particles were studied by means of UV-visible spectrophotometry and transmission electron microscopy (TEM). Particle size increased with low reagent concentration. The change in absorption spectra with the particle size was observed, i.e. blue shift attributed to decrease in particle size Paper presented at the 5th IUMRS ICA98, October 1998, Bangalore.  相似文献   

17.
A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique. The silica packed chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly packing at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface area-to-volume ratio of the silica packing, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.  相似文献   

18.
采用改进的St(O)ber法制备了单分散性较好、表面光滑的SiO2球形颗粒,将丁二酸化学键合于SiO2胶体球表面以提高其Zeta电势,再采用垂直沉积法在水溶液中制备出SiO2胶体晶体.通过X射线衍射仪、场发射扫描电子显微镜(SEM)和Zeta电位粒度仪对颗粒和胶体晶体的晶型、显微形貌、电学性能进行测试分析.结果表明:所...  相似文献   

19.
Sun B  Sirringhaus H 《Nano letters》2005,5(12):2408-2413
Colloidal zinc oxide (ZnO) nanocrystals are attractive candidates for a low-temperature and solution-processible semiconductor for high-performance thin-film field-effect transistors (TFTs). Here we show that by controlling the shape of the nanocrystals from spheres to rods the semiconducting properties of spin-coated ZnO films can be much improved as a result of increasing particle size and self-alignment of the nanorods along the substrate. Postdeposition hydrothermal growth in an aqueous zinc ion solution has been found to further enhance grain size and connectivity and improve device performance. TFT devices made from 65-nm-long and 10-nm-wide nanorods deposited by spin coating have been fabricated at moderate temperatures of 230 degrees C with mobilities of 0.61 cm(2)V(-1)s(-1) and on/off ratios of 3 x 10(5) after postdeposition growth, which is comparable to the characteristics of TFTs fabricated by traditional sputtering methods.  相似文献   

20.
A novel gold nanoparticle-tripeptide (GNP-tripeptide) conjugate was prepared by peptide in-situ redox technique at ambient temperatureusing a newly designed tripeptide. This new tripeptide was nso designed that it has a C-terminus tyrosine residue, which reduced Au+3 to Au, and the terminally located free amino group was bound to the gold nanoparticle (GNP) surface resulting in highly stable Au colloids. The average diameter of the tripeptide-stabilized GNP is 8.7 +/- 2.3 nm. Tripeptide bound gold nanoparticles formed three-dimensional assemblies in the presence of an excess of similar or disimilar tripeptides. The aggregation of GNPs results in a red shift in the surface plasmon resonance from lambda max = 527 to 556 nm. The effect of the solvent, concentration, and nature of the tripeptides on the assembly process were investigated by TEM and UV-visible spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号