首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
齿轮的裂纹故障不仅影响机械系统的整体性能,还会导致机器损坏,因此,研究了齿轮裂纹长度的故障诊断方法。以多传感振动信号为研究对象,将小波包各个频段的能量比系数作为齿轮裂纹的故障特征,并通过改进的神经网络模型进行特征分类,实现齿轮裂纹长度的故障诊断。研究结果表明:所提出的故障诊断方法识别率高(97.5%),通用性好,能有效辨识不同工况下的齿轮故障。  相似文献   

2.
基于小波包分析的往复式天然气压缩机故障诊断系统   总被引:1,自引:0,他引:1  
介绍了小波包分析的基本原理,在对往复式天然气压缩机的故障特点进行详细分析的基础上,提出利用小波包分频带的能量特征提取故障特征参数,建立起振动信号各频带能量到往复式天然气压缩机各故障状态间的映射关系,通过各频率成分能量的变化来诊断故障,在此基础上研制了往复式天然气压缩机故障诊断系统。  相似文献   

3.
理论分析和实例证明,峭度指标等滚动轴承振动时域统计参量可以判定轴承工作是否正常,但不能给出更多信息。通过小波包分析对振动信号进行分解,并有针对性地对包含有故障特征频率的频段信号进行重构,能有效地滤去各种干扰信号,显示故障特征信息,为滚动轴承的故障诊断提供了一种快速有效的途径。  相似文献   

4.
根据滚动轴承振动信号的频域变化特征,采用小波包分析对其建立频域能量特征向量,利用径向基函数神经网络完成滚动轴承故障状态的识别.理论和试验证明了该方法的有效性和实用性.  相似文献   

5.
基于小波包和支持向量机的液压泵故障诊断   总被引:1,自引:0,他引:1  
研究基于小波包频带能量的故障诊断方法及其在齿轮泵故障诊断中的应用.论述齿轮泵的典型故障设置及其数据采集.针对齿轮泵实验数据,研究基于小波包和支持向量机的齿轮泵故障诊断方法.实验结果表明:基于小波包一支持向量机的故障诊断方法是有效的,而且可以满足在线实时状态监测与故障诊断的要求.  相似文献   

6.
提出磁记忆信号的小波包能量谱分析方法,以小波包变换理论为基础,通过对有中心小孔缺陷的45号钢和18CrNi4A试样进行拉伸试验,采集不同载荷下试样表面的磁记忆信号。用sym6小波对所得信号进行小波包能量谱特征分析。该方法可有效判断试样的应力集中部位及应力集中程度。  相似文献   

7.
齿轮泵产生噪声时基本上都伴有振动。对齿轮泵的振动原因及振动信号进行分析,由于齿轮泵的振动信号包含大量的频谱,利用小波分析原理及小波包分解故障信号,并与正常信号比较,抽取与故障有关的几个频段进行重构,剔除正常振动分量和干扰项,从而使故障特征信号从复杂的振动信号中分离出来,便于判断齿轮泵的故障原因。  相似文献   

8.
针对手机振动马达检测量大、检测困难等问题,引入卷积神经网络对故障马达波形图进行分类检测.用采集卡采集马达转动时的原始电压信号,对电压信号进行两层小波包分解并重构低频信号,截取原始信号减去重构信号的波形图片进行预处理作为数据集.再用TensorFlow框架训练数据模型,对振动马达电刷不良、波形异常、波形跌落、磁场不良、良...  相似文献   

9.
为识别数控机床运行过程中滚动轴承的运行状态,提高滚动轴承的故障状态诊断正确率,提出了一种基于小波包分解的改进遗传算法优化BP神经网络的滚动轴承故障识别方法。以滚动轴承的4种故障状态为研究对象,通过小波包分解振动信号,得到敏感特征向量;针对BP神经网络的缺点,运用改进遗传算法优化BP神经网络的阈值和权值,实现最优训练,建立更精确的滚动轴承IGA-BP状态预测模型。结果表明:IGA-BP预测模型收敛速度更快,预测准确率更高,证明了所提方法的有效性。  相似文献   

10.
针对齿轮泵故障成因复杂、模糊性强的特点,结合小波包分解与K-L变换,提出一种适用于支持向量机故障诊断的特征提取方法。通过小波包对样本故障振动信号进行分解得到特征向量,而后利用K-L变换处理得到新的特征向量集,达到降维去噪的目的。将处理后的特征向量集用于支持向量机的模型训练,分析结果表明:该方法能够有效提高故障模式识别准确率和识别效率。  相似文献   

11.
邵建浩  张婷 《机床与液压》2022,50(14):166-170
以SCARA机器人为研究对象,在ADAMS软件中建立SCARA机器人模型,进行仿真。采集SCARA机器人大臂前后端、小臂前后端及底座等容易出现裂纹部位的加速度数据;在MATLAB中运用BP神经网络建立SCARA机器人故障诊断模型,实现利用BP神经网络对SCARA机器人故障进行智能识别与分类。结果表明:BP神经网络的计算结果与期望输出基本一致,验证了其准确性及可靠性。  相似文献   

12.
滚动轴承工作环境恶劣、复杂,在采集信号的过程中,不可避免地会有噪声夹杂其中。为实现快速特征提取的同时提高识别率,提出一种基于主成分分析(PCA)降噪的卷积神经网络(CNN)故障诊断方法。该方法引入PCA对信号进行降噪预处理,再将处理后的信号转换成二维特征图像,输入CNN模型以提取转换后的图像特征,进行故障模式识别与分类。利用凯斯西储大学滚动轴承数据集进行故障诊断试验,结果表明:所提方法具有可行性与有效性,且满足鲁棒性和实时性的应用要求。  相似文献   

13.
针对航空发动机液压卡箍-管路系统具有高度复杂性,导致卡箍振动信号存在非线性、非平稳性,从而难以提取出卡箍故障状态有效信息的问题,提出一种基于优化变分模态分解(VMD)与卷积神经网络(CNN)的卡箍智能故障诊断方法。基于优化的VMD将液压管路系统-卡箍振动信号分解成一系列固有模态函数;将含有卡箍故障信号明显的IMF输入到卷积神经网络训练模型,采用CNN进行自主特征学习和模式识别。并将该方法应用于实例中,结果表明:该方法不仅能有效地对信号进行分解,同时对不同类型的卡箍故障可达到精准识别和故障诊断。  相似文献   

14.
基于小波包和支持向量机的滚动轴承故障模式识别   总被引:2,自引:1,他引:2  
田野  陆爽 《机床与液压》2006,(6):236-240
为了解决对故障轴承的特征提取和故障特征准确分类问题,提出了应用小波包变换和支持向量机相结合进行滚动轴承故障诊断的方法.小波包变换具有良好的时-频局部化特征,非常适于对瞬态或时变信号进行特征提取.而支持向量机可完成模式识别和非线性回归.利用上述原理根据轴承振动信号的频域变化特征,采用小波包变换对其提取频域能量特征向量,然后利用建立的支持向量机多故障分类器完成滚动轴承故障模式的识别.试验结果表明,支持向量机可以有效、准确地识别轴承的故障模式,为轴承故障诊断向智能化发展提供了新的途径.  相似文献   

15.
用小波包分解(Wavelet Packet Decomposition,WPD)处理低信噪比信号时,常出现残存大量带内噪声的问题,严重影响了后期的故障诊断准确性。针对该问题,提出将频率加权能量算子(Frequency-Weighted Energy Operator,FWEO)作为小波包分解的后处理器,以消除其带内噪声,增强故障特征提取效果。对采样获得的故障数据进行3层小波包分解,得到各频带系数;对每个频带系数进行峭度计算,以峭度最大原则获取最优频带系数;以频率加权能量算子追踪最优频带系数的瞬时能量,从信号能量的角度消除信号中的带内噪声成分,二次增强信号中隐藏的故障脉冲信息;对其进行包络谱分析,得到最终诊断结果。仿真数据、实验室数据和工程数据验证了所提方法的有效性和实用性。  相似文献   

16.
针对传统故障特征提取过程复杂、诊断方案单一且准确性差等问题,提出了基于多阈值小波包和深度置信网络(DBN)的轴承故障识别方案。本文作者采用最优小波基函数和软硬阈值结合方法对原始振动信号进行三层分解降噪处理,得到8个从低频到高频段的信号成分,对其进行组合重构作为神经网络的输入样本;通过DBN在数据处理上的特征重构优势,建立了DBNBP神经网络的轴承故障识别模型,确定模型的各类参数。经多次实验,探究不同样本输入对模型识别率的影响,并与传统的浅层神经网络识别模型做对比分析,结果表明:经训练的DBNBP轴承故障识别模型可从原始数据、小波包分解信号实现轴承故障信号的准确特征学习和分类,结合识别率和诊断时间考虑,经小波包分解信号输入具有更优的诊断效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号