首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic and chemical properties of reduced graphene oxide (RGO) can be modulated by chemical doping foreign atoms and functional moieties. Nitrogen-doped reduced graphene oxide (N-RGO) is a promising candidate for oxygen reduction reaction (ORR) in fuel cells. However, there are still some challenges in further preparation and modification of N-RGO. In this work, a low-cost industrial material, urea, was chosen to modify RGO by a facile, catalyst-free thermal annealing approach in large scale. The obtained N-RGO, as a metal-free catalyst for oxygen reduction was characterized by XRD, XPS, Raman, SEM, TEM, and electrochemical measurements. It was found that the optimum synthesis conditions were a mass ratio of graphene oxide and urea equal to 1:10 and an annealing temperature of 800 °C. Detailed X-ray photoelectron spectrum analysis of the optimum product shows that the atomic percentage of N-RGO samples can be adjusted up to 2.6 %, and the resultant product can act as an efficient metal-free catalyst, exhibiting enhanced electrocatalytic properties for ORR in alkaline electrolytes. This simple, cost-effective, and scalable approach opens up the possibility for the synthesis of other nitrogen doping materials in gram-scale. It can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications, and even new catalytic materials for applications beyond fuel cells.  相似文献   

2.
3.
Qin  Li  Ding  Ruimin  Wang  Huixiang  Wu  Jianghong  Wang  Conghui  Zhang  Chenghua  Xu  Yao  Wang  Liancheng  Lv  Baoliang 《Nano Research》2017,10(1):305-319
Nano Research - Nitrogen-doped graphene is a promising candidate for the replacement of noble metal-based electrocatalysts for oxygen reduction reactions (ORRs). The addition of pores and holes...  相似文献   

4.
5.
If graphene is ever going to live up to the promises of future nanoelectronic devices, an easy and cheap route for mass production is an essential requirement. A way to extend the capabilities of plasma-enhanced chemical vapour deposition to the synthesis of freestanding few-layer graphene is presented. Micrometre-wide flakes consisting of four to six atomic layers of stacked graphene sheets have been synthesized by controlled recombination of carbon radicals in a microwave plasma. A simple and highly reproducible technique is essential, since the resulting flakes can be synthesized without the need for a catalyst on the surface of any substrate that withstands elevated temperatures up to 700?°C. A thorough structural analysis of the flakes is performed with electron microscopy, x-ray diffraction, Raman spectroscopy and scanning tunnelling microscopy. The resulting graphene flakes are aligned vertically to the substrate surface and grow according to a three-step process, as revealed by the combined analysis of electron microscopy and x-ray photoelectron spectroscopy.  相似文献   

6.
In this study, the authors report a supercritical CO2 processing technique for intercalating and exfoliating layered graphite. Few-layer graphene is produced by immersing powdered natural graphite in supercritical CO2 for 30 min followed by rapidly depressurizing the supercritical fluid to expand and exfoliate graphite. The graphene nanosheets are collected by discharging the expanding CO2 gas directly into a solution containing dispersant sodium dodecyl sulfate (SDS) to avoid restacking. Atomic force microscopy (AFM) shows that the typical graphene sheet contains about 10 atomic layers. This technique offers a low-cost, simple approach to large-scale production of pure graphene sheets without the need for complicated processing steps or chemical treatment.  相似文献   

7.
We demonstrate a method by which few-layer graphene samples can be etched along crystallographic axes by thermally activated metallic nanoparticles. The technique results in long (>1 microm) crystallographic edges etched through to the insulating substrate, making the process potentially useful for atomically precise graphene device fabrication. This advance could enable atomically precise construction of integrated circuits from single graphene sheets with a wide range of technological applications.  相似文献   

8.
石墨烯片的制备与表征   总被引:1,自引:0,他引:1  
通过微机械剥离高定向热解石墨(HOPG)法和化学气相沉积法(CVD)分别制备了不同层数的石墨烯片,并将其转移到硅片上.利用石墨烯片在不同厚度SiO2硅片上光学显微图像颜色及对比度存在的差异,对其层数进行了识别与区分.采用原子力显微镜(AFM)和拉曼(Raman)光谱判定了所制石墨烯片的层数.结果表明:所制石墨烯片有单层、少数层和多层.与双层石墨烯片的Raman谱图比较,多层石墨烯片的2D模线宽变宽,G模强度增大.此外,CVD法可生长出大面积(~cm2)的石墨烯片.  相似文献   

9.
10.
The widespread use of communication facilities and electronic devices has increased the demand for novel high-efficiency and lightweight microwave absorption materials. In this work, we propose using N-doped graphene (NG)/wax composites, where an interconnected 3D graphene network is used as filler in a wax matrix. Nitrogen atoms were substitutionally doped into the graphene lattice by hydrothermal method. It was found that controlling the amount of NG could effectively modulate the electrical properties of graphene. Inspection of the samples prepared showed that to a large extent, the vacuum infusion method effectively retained the graphene intact 3D structure. Samples filled with 3.6 wt% NG exhibited the most prominent microwave absorption properties; the minimum reflection loss registered was 53.25 dB at 13.10 GHz for a sample thickness of 3.3 mm, and the bandwidth of the reflection loss less than 10 dB (90% absorption) can reach up to 8.15 GHz. The result indicates that the nitrogen-doped graphene can greatly improve the dielectric loss of electromagnetic wave absorber. More importantly, the work presented provides the framework for a unique facile approach to manufacture low-cost NG/wax composites with strong electromagnetic wave absorption ability at very low filler loading.  相似文献   

11.
Lui CH  Li Z  Chen Z  Klimov PV  Brus LE  Heinz TF 《Nano letters》2011,11(1):164-169
Few-layer graphene (FLG) has been predicted to exist in various crystallographic stacking sequences, which can strongly influence the material's electronic properties. We demonstrate an accurate and efficient method to characterize stacking order in FLG using the distinctive features of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and rhombohedral (ABC) stacking in tri- and tetralayer graphene. We find that 15% of exfoliated graphene tri- and tetralayers is composed of micrometer-sized domains of rhombohedral stacking, rather than of usual Bernal stacking. These domains are stable and remain unchanged for temperatures exceeding 800 °C.  相似文献   

12.
13.
Graphene has been touted as the prototypical two-dimensional solid of extraordinary stability and strength. However, its very existence relies on out-of-plane ripples as predicted by theory and confirmed by experiments. Evidence of the intrinsic ripples has been reported in the form of broadened diffraction spots in reciprocal space, in which all spatial information is lost. Here we show direct real-space images of the ripples in a few-layer graphene (FLG) membrane resolved at the atomic scale using monochromated aberration-corrected transmission electron microscopy (TEM). The thickness of FLG amplifies the weak local effects of the ripples, resulting in spatially varying TEM contrast that is unique up to inversion symmetry. We compare the characteristic TEM contrast with simulated images based on accurate first-principles calculations of the scattering potential. Our results characterize the ripples in real space and suggest that such features are likely common in ultrathin materials, even in the nanometer-thickness range.  相似文献   

14.
林婷婷  吕秋丰 《功能材料》2015,(5):5007-5012
氮掺杂石墨烯具有独特的性能,被广泛应用于电子设备、光伏产业和传感器等领域。首先通过对目前氮掺杂石墨烯的主要制备方法进行分析和讨论,探讨了不同维度的氮掺杂石墨烯的结构和性能,并总结了氮掺杂石墨烯的应用范围。而后,基于目前的研究现状指出氮掺杂石墨烯将会面临的挑战及未来的发展趋势。  相似文献   

15.
Ag/ZnO nanoparticles can be obtained via photocatalytic reduction of silver nitrate at ZnO nanorods when a solution of AgNO3 and nanorods ZnO suspended in ethyleneglycol is exposed to daylight. The mean size of the deposited sphere like Ag particles is about 5 nm. However, some of the particles can be as large as 20 nm. The ZnO nanorods were pre-prepared by basic precipitation from zinc acetate di-hydrate in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. They are about 50–300 nm in length and 10–50 nm in width. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) were used to characterize the resulting Ag/ZnO nanocomposites.  相似文献   

16.
Kim YJ  Hadiyawarman  Yoon A  Kim M  Yi GC  Liu C 《Nanotechnology》2011,22(24):245603
This study describes the hydrothermal growth of ZnO nanostructures on few-layer graphene sheets and their optical and structural properties. The ZnO nanostructures were grown on graphene sheets of a few layers thick (few-layer graphene) without a seed layer. By changing the hydrothermal growth parameters, including temperature, reagent concentration and pH value of the solution, we readily controlled the dimensions, density and morphology of the ZnO nanostructures. More importantly, single-crystalline ZnO nanostructures grew directly on graphene, as determined by transmission electron microscopy. In addition, from the photoluminescence and cathodoluminescence spectra, strong near-band-edge emission was observed without any deep-level emission, indicating that the ZnO nanostructures grown on few-layer graphene were of high optical quality.  相似文献   

17.
Wang Z  Xie R  Bui CT  Liu D  Ni X  Li B  Thong JT 《Nano letters》2011,11(1):113-118
We report thermal conductivity (κ) measurements from 77 to 350 K on both suspended and supported few-layer graphene using a thermal-bridge configuration. The room temperature value of κ is comparable to that of bulk graphite for the largest flake, but reduces significantly for smaller flakes. The presence of a substrate lowers the value of κ, but the effect diminishes for the thermal transport in the top layers away from the substrate. For the suspended sample, the temperature dependence of κ follows a power law with an exponent of 1.4 ± 0.1, suggesting that the flexural phonon modes contribute significantly to the thermal transport of the suspended graphene. The measured values of κ are generally lower than those from theoretical studies. We attribute this deviation to the phonon-boundary scattering at the graphene-contact interfaces, which is shown to significantly reduce the apparent measured thermal conductance of graphene.  相似文献   

18.
Spatially resolved Raman spectroscopy of single- and few-layer graphene   总被引:1,自引:0,他引:1  
We present Raman spectroscopy measurements on single- and few-layer graphene flakes. By using a scanning confocal approach, we collect spectral data with spatial resolution, which allows us to directly compare Raman images with scanning force micrographs. Single-layer graphene can be distinguished from double- and few-layer by the width of the D' line: the single peak for single-layer graphene splits into different peaks for the double-layer. These findings are explained using the double-resonant Raman model based on ab initio calculations of the electronic structure and of the phonon dispersion. We investigate the D line intensity and find no defects within the flake. A finite D line response originating from the edges can be attributed either to defects or to the breakdown of translational symmetry.  相似文献   

19.
A facile catalyst-free one-step approach for the preparation of carbon nanotubes and graphene sheets at ambient pressure and ?? 230 °C has been developed. Carbon nanotubes and graphene sheets are prepared by reducing tetrachloroethylene with sodium in paraffin oil under reflux. The as-prepared products can be easily purified just by washing with common solvents. No metallic contaminants or other impurities exist in the products. The products show unique optical properties and may find various applications such as optical light attenuators and catalyst supports. This high yield and economical process presents a possible strategy for the large-scale production of carbon nanotubes and graphene sheets for future applications.   相似文献   

20.
Graphene/ZnO nanocomposites were successfully synthesized by microwave-assisted method. The structure, morphology, optical and composition of the obtained samples were characterized using XRD, FT-IR, laser Raman, UV–Vis spectroscopy and XPS analysis. XRD analysis confirmed the presence of graphene/ZnO nanocomposite. FE-SEM image reveals that the homogenous distribution of ZnO nanoparticles on the graphene nanosheets. The electrochemical properties of the graphene/ZnO electrodes were analyzed by cyclic voltammetry and impedance spectroscopy. The results confirmed that the incorporation of ZnO nanoparticles enhanced the capacitive performance of graphene electrode. Graphene/ZnO nanocomposite electrode showed higher capacitance value of 109 F g−1 at a scan rate of 5 mV s−1 in 1 M KCl solution as compared to the graphene electrodes. These results demonstrated the importance and great potential of graphene based composites in the development of high-performance energy-storage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号