首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic nonspherical particles have asymmetric surface physical and chemical properties. Such a unique structure makes them suitable for applications in many areas, such as chemical and biological sensors, colloidal surfactants, self-assembly, building blocks of complex superstructures, and materials engineering. In this study, amphiphilic sulfonated polystyrene/polystyrene (SPS/PS) composite particles with controllable morphologies are synthesized by combining modified treatment and multistage seeded swelling polymerization. Core-shell SPS particles were first obtained by modifying cross-linked PS particles with concentrated sulfuric acid, and the surface of SPS particles was a hydrophilic sulfonated polystyrene layer. With further twice seeded swelling polymerization, new hydrophobic PS oil phase sprouted on the strong hydrophilic surface even without any surfactant assistance in aqueous media. The morphologies of these SPS/PS composite particles could be adjusted by changing the crosslinking density of the seed microspheres, the sulfonation temperature and the swelling ratio of monomer/seed. These polymer composite particles can be used as solid surfactants.  相似文献   

2.
Monodisperse polymer particles were prepared via one‐step seeded polymerization using polystyrene, poly(methyl methacrylate), or styrene/methyl methacrylate copolymer [poly(ST‐co‐MMA)] as seed particles and 1,6‐hexanedioldiacrylate or divinylbenzene as crosslinking monomer. For the study, the effects of the combination of seed polymer and crosslinking monomer, the ratio of the absorbed monomer to the seed polymer particles (swelling ratio: S/R), and the seeded polymerization rate on the variation of surface morphology and mechanical properties of polymer particles, such as recovery rate, K‐values, breaking strength, and breaking displacement were investigated by using microcompression test. It was observed that the surface morphology could be controlled by changing polymerization rate or combination of seed polymer and crosslinking monomer, and it had a great influence on mechanical properties, especially the breaking strength. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2350–2360, 2007  相似文献   

3.
Poly(methyl methacrylate‐co‐styrene) composite latices were prepared by thermally initiated seed emulsion (co)polymerization of styrene (ST), methyl methacrylate (MMA), or ST and MMA employing a PST or PMMA seed in the absence of conventional initiators. The changes of particle morphology, observed by transmission electron microscopy (TEM), were investigated by varying seed particle component, the weight ratio of monomer to seed polymer, monomer composition, and employing preswelling of the seed particles. The size distribution of polymer particles obtained from thermally initiated emulsion (co)polymerization was improved by employing the seed process. Hemisphere‐like, sandwich‐like, core‐shell, and inverted core‐shell particle morphologies were observed depending upon the polymerization conditions. The preswelling of seed particles did not affect the morphology of final particles. The particle morphologies, obtained from the thermal process, were compared with those obtained from conventional seed emulsion polymerization. The incorporation of an initiator fragment SO to polymer chain ends seemed to allow the PST chains to gain some hydrophilicity. From the observation of particle morphology, the hydrophilicity of involved polymers were in the following order: PMMA with ionic (? SO) chain ends > PMMA with no ionic ends > PST with ionic ends > 60% MMA P(MMA‐co‐ST) with no polar ends > 40% MMA P(MMA‐co‐ST) with no polar ends > PST with no polar ends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1737–1748, 2002; DOI 10.1002/app.10581  相似文献   

4.
Effect of crosslinking on minimum film formation temperature (MFT) and particle morphology was investigated using the latices composed by the combination of crosslinked soft core-hard shell. n-Butyl acrylate (nBA) and ethylene glycol dimethacrylate (EGDMA) were used to prepare crosslinked rubber with methylmethacrylate (MMA) or styrene (ST) as a hard plastic component. Ordinary batch (flooded with secondary monomer) and semicontinuous (starved feed) operations were employed to compare the thermal properties of composite latices resulting from the different mode of secondary polymerization. As the degree of crosslinking increases, MFT of the latices obtained by batch operation became higher than those by semibatch operation. Observation of microtomed sections of particles stained with RuO4 did not reveal much difference in particle morphologies between the two operations. There was a definite relationship between MFT and molecular weight of THF soluble fraction of composite polymers regardless the mode of operation.  相似文献   

5.
Inmaculada Aranaz 《Polymer》2011,52(14):2991-2997
The high differential reactivity of methylmethacrylate (MMA) and vinylpyrrolidone (VP) in standard radical copolymerization allows the one-pot preparation of stable methylmethacrylate (MMA)-based solid particles by a surfactant-free process. The copolymers obtained in methanol exhibit a high compositional heterogeneity and a phase separation at high conversion. Partitioning of copolymer chains between the phases as a function of their composition has been observed, being the dispersed phase rich in copolymers with high content of hydrophobic MMA monomer and the continuous phase rich in copolymers with high content of hydrophilic VP monomer. The addition of water under stirring leads to formation of solid particles. The particles have shown a hierarchical structure composed of micron-size particles decorated with nano-size structures on their surface. The size of the nanostructures depends on the initial MMA/VP feed molar ratio in the copolymerization.  相似文献   

6.
The modification of porous PVC particles by an insitu stabilizer‐free polymerization/crosslinking of a monomer/crosslinker/peroxide solution absorbed within the PVC particles is presented. The modifying crosslinked polymers are polystyrene (PS) crosslinked with DVB (divinyl benzene), polymethyl methacrylate (PMMA) crosslinked with ethylene glycol dimethacrylate (EGDMA), and styrene‐MMA copolymer crosslinked with DVB. The modified PVC particles characterization includes polymerization yield, non‐extractables, 13C solid‐state CPMAS NMR, porosity measurements and also morphology and dynamic mechanical behavior (DMTA). The levels of nonextractable fractions found and 13C solid‐state CPMAS NMR results are indicative of low chemical interaction in the semi‐IPN PVC particles. Particle porosity levels and SEM observations indicate that styrene and MMA mainly polymerize within the PVC particles' bulk and just small amounts in the pores. MMA polymerization in the PVC pores is as crusts covering the PVC pore surfaces, whereas styrene polymerization in the PVC pores is by filling the pores. Dynamic mechanical studies show that tanδ and the storage modulus curves are influenced by the incorporation of PS and XPS but not by the incorporation of PMMA and XPMMA.  相似文献   

7.
The seeded batch dispersion polymerization with or without monomer absorption was compared with the batch polymerization and delayed addition by batch polymerization, to prepare the highly crosslinked, monodispersed polystyrene (PS) particles. The seeded batch polymerization was carried out under the variation of styrene (in second stage)/styrene (in PS seed) (St/St) ratio, divinylbenzene (DVB) concentration, and polymerization temperature using 1.9‐μm monodispersed PS seed particles. The experimental results imply that the seeded batch process is more efficient method that could avoid the sensitive particle nucleation step in the presence of the crosslinker than the batch and delayed addition processes. Without monomer absorption, 2.3‐μm uniform crosslinked PS particles with 7 wt % of the DVB were prepared in 1/1 (St/St) ratio. In comparison, with the monomer absorption, monodispersed and smooth‐surfaced PS particles containing 20 wt % of the DVB were formed. A total of 5% weight loss of the crosslinked PS particles determined by TGA occurred from 353.8 to 374.8°C, and the degree of swellability in toluene decreased from 150 to 104.5% with increasing the DVB concentration from 5 to 20 wt % because of the increase of the crosslink density of the particles. The seeded polymerization, especially through monomer absorption procedure, is a novel way to obtain highly crosslinked, monodispersed PS particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
A series of uniform, macroporous particles with different surface chemistries were prepared with different acrylic comonomers [methyl methacrylate (MMA), butyl methacrylate (BMA), epoxypropyl methacrylate (EPMA), 2‐hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA)] with styrene–divinylbenzene (S–DVB) in a multistep seeded polymerization. In the synthesis, uniform polystyrene seed particles 6.2 μm in size were swollen first with a low molecular weight organic agent and then with a monomer phase including an S–DVB mixture and a relatively polar acrylic monomer. Final macroporous particles approximately 10 μm in size were obtained by the repolymerization of the monomer phase in the swollen seed particles. Surface and bulk morphologies were investigated with scanning and transmission electron microscopy, respectively. Although highly porous particles could be achieved with relatively hydrophobic monomers such as styrene, BMA, MMA, and EPMA, the use of hydrophilic monomers such as HEMA and MAA led to the synthesis of uniform particles with lower macroporosity. A comparison of Fourier transform infrared and Fourier transform infrared/diffuse reflectance spectroscopy spectra indicated that the concentration of polar acrylic monomer on the surface was higher than in the bulk structure. The nonspecific protein adsorption behavior of uniform, macroporous particles was investigated with albumin as a model protein. The highest nonspecific albumin adsorption was observed with plain poly(styrene‐co‐divinylbenzene) [poly(S–DVB)] particles. The particles produced with MMA and EPMA also exhibited albumin adsorption capacities very close to that of plain poly(S–DVB). Reasonably low nonspecific albumin adsorption was observed with the particles produced in the presence of MAA, HEMA, and BMA. Poly(S–DVB) particles functionalized with poly(vinyl alcohol) provided nearly zero nonspecific albumin adsorption. For nonspecific albumin binding onto the particles via a physical adsorption mechanism, desorption ratios higher than 80% could be achieved. The desorption ratio with the EPMA‐carrying particles was only 5% because the albumin adsorption onto EPMA‐carrying particles occurred predominantly with covalent‐bond formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 414–429, 2002; DOI 10.1002/app.10412  相似文献   

9.
Wood plastic composites (WPC) of simul were prepared by gamma radiation using butylacrylate (BA) and methylmethacrylate (MMA) as the monomer and methanol as the swelling agent at 9:1 (v/v) ratio. IR spectra of simul, bulk polymer of BA (or MMA) film, and WPC of different polymer loadings ranging from 18 to 115% were studied. Increase of the characteristic peak intensity at 1735 cm?1 (C?O vibration for acetyl groups) over that of 1620 cm?1 (conjugated aryl carbonyl groups) along with the increase of polymer loading of simul with the monomer indicates that the graft copolymerization took place between the monomer and the simul wood matrix. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The synthesis of structured latex particles involved the preparation of a slightly crosslinked poly(n-butyl acrylate) (PBA) seed and a poly(benzyl methacrylate-styrene) [P(BM-St)] shell. It was found that structured core-shell latex particles prepared by semicontinuous monomer addition yielded better coverage of the seed particles than those polymerized by batch and that poly(benzyl methacrylate) yielded better coverage than polystyrene (PS). Polymerizations in the presence and absence of a chain transfer agent indicated that the presence of isooctyl mercaptopropionate (IOMP) causes the second-stage monomer to polymerize as an isolated, single patch of shell material. In the absence of IOMP, smaller patches of shell material are spread throughout the PBA seed surface. The different morphologies obtained under different polymerization conditions were attributed to thermodynamic and kinetic factors such as polymer-polymer interfacial tensions and viscosity effects. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Monodisperse polystyrene particles (6.6 μm diameter) were produced by seeded polymerization utilizing the dynamic swelling method with cooling process as follows. Monodisperse polystyrene seed particles (1.8 μm diameter) were dispersed in ethanol/water (3/4 w/w) medium containing styrene monomer, benzoyl peroxide as initiator and poly(vinyl alcohol) as stabilizer at 65d?C. By lowering the temperature to ?5d?C at a speed of ?1d?C/min the polystyrene seed particles were swollen from 1.8 to 7.7 μm by the absorption of styrene monomer, keeping the high monodispersity. An appropriate amount of water was then added to the dispersion at ?5d?C to depress the redissolution of styrene from the swollen particles into the medium. By elevating the temperature the seeded polymerization was carried out at 70d?C. The production of submicron-size polystyrene new particles as a by-product was depressed by the addition of NaNO2 to the medium.  相似文献   

12.
Small‐angle X‐ray scattering (SAXS) was applied to investigate the microstructure of unmodified and modified porous commercial suspension‐type poly(vinyl chloride) (PVC) particles. The modified PVC particles were prepared by an in situ stabilizer‐free polymerization/crosslinking of particles absorbed with a monomer/crosslinker/peroxide solution. The modifying polymers include styrene with or without divinyl benzene (DVB) as a crosslinker and methyl methacrylate (MMA) with or without ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The SAXS method was used to highlight the effect of polystyrene (PS) on the microstructure of PVC particles and to evaluate the characteristic lengths, both in the PVC/PS and the PVC/XPS (PS crosslinked with 0 and 5% DVB, respectively) systems. A model is suggested, where during the synthesis modification process, swelling of PVC by styrene and styrene polymerization occur simultaneously. PVC swelling by styrene causes destruction of the PVC subprimary particles, whereas styrene polymerization leads to phase separation resulting from incompatibility of the polymers. It was further suggested that because of PVC swelling by styrene, structure of the subprimary particles is lost. Therefore the characteristic lengths of PVC/PS and PVC/XPS, as calculated from the SAXS measurements, were attributed to the size of the phase‐separated PS and XPS inclusions, respectively. The SAXS method also shows that PMMA and XPMMA do not influence the PVC microstructure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1024–1031, 2005  相似文献   

13.
采用两步法制备出了粒径均一,球形度好的3μm交联聚苯乙烯微球。通过对两种条件下溶胀所得微球进行比较可知加入溶胀剂时制备出的微球球形度更好,表面更光滑,粒径分布范围更窄。较佳的制备条件为:聚苯乙烯单体的用量为种子微球的2.5~3.5倍,溶胀剂用量为种子微球的1~2倍,交联剂的用量为苯乙烯用量的5%~12%。  相似文献   

14.
Yi Wang  Xian Wan  Xin Wang 《Polymer》2009,50(14):3361-10226
Poly(methylmethacrylate) (PMMA) and polystyrene(PS)/PMMA particles with Janus-like morphology were prepared via the internal phase separation followed by extraction of hexadecane (HD) template. The internal phase separation was triggered by evaporation of dichloromethane (DCM) from the polymer/HD/DCM-in-water emulsion droplets, which led to the formation of HD/PMMA or HD/PMMA/PS microparticles. After extraction of HD with hexane, PMMA or PS/PMMA particles with different morphologies were produced. Poly(vinyl pyrrolidone) (PVP), sodium dodecyl sulfonate (SDS) or sodium dodecyl benzylsulfate (SDBS) was chosen as the emulsifier. The morphology depended on the HD/polymer ratio and the interfacial tensions, which were adjusted by changing the type of the emulsifier and its concentration. With poly(vinyl pyrrolidone) (PVP) emulsifier, PMMA hollow spheres were observed; while with SDS emulsifier, the particles changed from bowl-like particles to hemispheres and truncated spheres with the increase of SDS content. The morphology of PS/PMMA composite particles depended on the ratio of the two polymers. Scanning electron microscopy observation, selective etching and X-ray photoelectron spectroscopy results confirmed that PMMA tended to engulf PS component. With the increase of PMMA/PS ratio, the particles changed the morphology from capped acorn to ‘ball in bowl’ morphology. Furthermore, the particle morphology was simulated via a theoretical model based on the minimum interfacial energy of the system. The simulation results agreed with the experimental observations. Our results indicate that internal phase separation is an effective method to obtain Janus-like microparticles. Via adjusting the composition of the system and the corresponding interfacial tensions, we could tailor the polymer particles with different morphologies.  相似文献   

15.
Relatively uniform microspheres containing a hydrophilic monomer, 2-hydroxyethyl methacrylate (HEMA), were prepared by employing a swelling method of uniform seed droplets. A uniform seed emulsion composed mainly of styrene (St) was prepared by the Shirasu porous glass (SPG) membrane emulsification technique; this was mixed with a secondary emulsion composed mainly of HEMA/St or HEMA/MMA (methyl methacrylate) prepared by a homogenizer for swelling. The swollen droplets obtained were polymerized at 75°C under a nitrogen atmosphere. The uniform microsphere with a higher content of HEMA was obtained successfully by the swelling method while it failed by a direct emulsification method. The effects of the composition of the oil phase and the inhibitor in the continuous phase on the incorporated fraction of HEMA, the morphology of particles, and monomer conversion were investigated. It was found that the incorporated fraction of HEMA increased with increasing its feed fraction, and more HEMA was incorporated into the microsphere when HEMA/MMA was used as the oil phase of the secondary emulsion rather than HEMA/St. Although the final conversion was very low when the feed fraction of HEMA was higher, it can be increased to more than 80% by using an adequate amount of ethylene glycol dimethacrylate (EGDMA) as a crosslinker and NaNO2 as an inhibitor in the aqueous phase. Various microspheres with different morphologies such as spherical, snowmanlike, and popcornlike were observed, depending on composition of the oil phase. Furthermore, the porous microsphere with a high content of HEMA was obtained by employing hexanol (HA) as a porogen. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1325–1341, 1997  相似文献   

16.
In this study, the monodisperse–macroporous particles produced by a relatively new polymerization protocol, the so‐called, “modified seeded polymerization,” were used as column‐packing material in the reversed phase chromatography (RPC) of proteins. The particles were synthesized in the form of styrene‐divinylbenzene copolymer approximately 7.5 μm in size. In the first stage of the synthesis, the monodisperse polystyrene particles 4.4 μm in size were obtained by dispersion polymerization and used as the “seed latex.” The seed particles were swollen by a low‐molecular‐weight organic agent and then by a monomer mixture. The monodisperse–macroporous particles were obtained by the polymerization of monomer mixture in the seed particles. In the proposed polymerization protocol, the number of successive swelling stages was reduced with respect to the present techniques by the use of sufficiently large particles with an appropriate average molecular weight as the seed latex. A series of particles with different porosity properties was obtained by varying the monomer/seed latex ratio. The separation behavior of HPLC columns including the produced particles as packing material was investigated in the RPC mode using a protein mixture including albumin, lysozyme, cytochrome c, and ribonuclease A. The chromatograms were obtained with different flow rates under an acetonitrile–water gradient. The theoretical plate number increased and chromatograms with higher resolutions were obtained with the particles produced by using a lower monomer/seed latex ratio. The separation ability of the column could be protected over a wide range of flow rates (i.e., 0.5–3 mL/min) with most of the materials tested. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 607–618, 2004  相似文献   

17.
The dynamic and equilibrium swelling behavior of polystyrene microparticles crosslinked with divinyl benzene was investigated in methyl ethyl ketone and cyclohexane. The dynamic studies gave new information about the mechanism of penetrant transport in this polymer. The equilibrium studies were used to determine important parameters of the crosslinked structure of these systems, including the average molecular weight between crosslinks, M?c  相似文献   

18.
The effects of initiator concentration, ionic strength of polymerization medium, polymerization temperature, and monomer/water phase ratio on particle size, particle size distribution and molecular weight of the resulting polymers prepared by an emulsifier-free emulsion polymerization of styrene, methyl methacrylate and glycidyl methacrylate have been studied. Optimal conditions for preparation of uniformly sized polystyrene particles larger than 1 μm have been found. An attempt to synthesize monodisperse particles of similar size from methacrylate monomers and crosslinked particles has failed. It is shown that the swelling ability of “non-activated” latex particles does not exceed 70 fold increase in the volume and strongly depends on the size of the original particles.  相似文献   

19.
Polymethylmethacrylate particles with narrow size distributions with different sizes in the range of 1.25–4.58 μm were produced by dispersion polymerization of methylmethacrylate (MMA) in ethanol/water media, by using 2,2′-azobisisobutyronitrile (AIBN) (as an initiator), (PVP) poly(vinyl pyrrolidone) (as a stabilizer), and ceric ammonium nitrate (CAN) (as a coinitiator and also as a costabilizer). Particle size was increased by increasing the initiator concentration and the ethanol: water ratio, and by decreasing the monomer: dispersion medium ratio and the PVP and CAN concentrations. The addition of CAN in the recipe of the MMA polymerization improved the monodispersity, and also increased the monomer conversion rate. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Docosanyl acrylate (DCA) monomer was copolymerized with different monomer feed ratios of cinnamoyloxy ethyl methacrylate (CEMA) or methyl methacrylate (MMA) monomer to produce different compositions for DCA/CEMA or DCA/MMA copolymer with low conversions.1H NMR spectroscopy was used to confirm the copolymer structure. DCA was crosslinked with different mol % of CEMA or MMA using dibenzoyl peroxide as initiator and various weight percentages of either 1,1,1‐trimethylolpropane triacrylates or 1,1,1‐trimethylolpropane trimethacrylates crosslinkers. The effects of monomer feed composition, crosslinker concentration, and the hydrophobicity of the copolymer units on swelling properties of the crosslinked polymers were studied through the oil absorbency tests. The network parameters, such as polymer solvent interaction (χ), effective crosslink density (υe), equilibrium modulus of elasticity (GT), and average molecular weight between crosslinks (Mc), were determined and correlated with the structure of the synthesized copolymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号