首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of six nonionic polymeric surfactants were prepared by polymerization of acrylated poly(ethylene glycol) (PEG, molecular weight MW = 400, 600 and 2,000) and allyl ester of long chain fatty acid chloride (decanoyl and lauroyl chloride). The unique structural features of these surfactants were confirmed by different spectroscopic tools (IR and 1H NMR). The surface properties of these compounds such as surface tension, interfacial tension, emulsion stability, wetting power, foam height, solubilization and dispersant properties in disperse dye systems were determined and evaluated. A comparison study was done between the chemical structures and surface properties of such compounds. Biodegradability and stability to hydrolysis in acidic and alkaline media were also determined and evaluated.  相似文献   

2.
A novel series of cationic surfactants containing Schiff base groups were synthesized by condensation of fatty amines namely: dodecyl, tetradecyl, hexadecyl and octadecyl amine and 4-diethyl aminobenzaldehyde. The chemical structures of these surfactants were confirmed using elemental analysis, FTIR spectra, 1H-NMR and atomic absorption spectroscopy. Surface properties of the synthesized compounds were determined using surface tension techniques. The results of the surface tension measurements showed good surface behaviors of these compounds in their aqueous solutions. The surface activities were found to be greatly influenced by the chemical structures of the synthesized compounds. The synthesized cationic Schiff bases were evaluated as corrosion inhibitors for carbon steel in different acidic media (HCl and H2SO4) at different doses (400, 200, 100, 50, 25 ppm). The corrosion inhibition efficiencies of these inhibitors were calculated using the corrosion rates of the carbon steel in the studied media and found in the acceptable range of the commercially used inhibitors. Also the chemical structure of these inhibitors was found of great influence on their inhibiting efficiency.  相似文献   

3.
Three novel imidazolium-based gemini surfactants had been synthesized and characterized using different spectroscopic techniques. The surface properties of the synthesized surfactants were determined using surface tension measurements at 20 °C. The surface parameters including critical micelle concentration (CMC), π CMC, Pc20, Γmax and A min were determined. The synthesized compounds were evaluated as corrosion inhibitors for carbon steel in 0.5 M HCl solution using the weight loss and polarization techniques. The biological activity of these surfactants was evaluated against sulfate reducing bacteria using most probable number method. The results indicate that the synthesized compounds have good surface properties and are proper corrosion inhibitors for low carbon steel, with a high inhibition efficiency observed around their CMC. These compounds exhibit a significant biocidal activity against sulfate reducing bacteria.  相似文献   

4.
A new method for the preparation of new heterocyclic amine surfactants based on sulfobetaines is proposed. Interfacial activities of the surfactants obtained in aqueous solution were studied by surface tension measurements. The critical micelle concentration, surface excess concentration, minimum area per surfactant molecule, and standard Gibbs energy of adsorption were determined. The adsorption properties of these compounds depend significantly on the alkyl chain length. Alkyl chain length also affects biological properties of the new surfactants, determining the minimum inhibitory concentration and size of inhibited growth zone. The compounds have high antimicrobial activity.  相似文献   

5.
A series of polymeric surfactants has been prepared through the reaction of soy protein with polyethoxylated stearyl ethers of various hydrophilic chain lengths. These surfactants exhibited surface activity, evaluated using surface tension, foaming, and wetting power that was superior to that of traditional surfactants containing only one hydrophobic moiety and one hydrophilic head group. Changing the ethoxylate (EO) group length had a significant effect on the surface activity. Increasing the EO group length decreased the critical micelle concentration (CMC) and increased the surface tension at the CMC (γCMC). The good surface properties of these polysaccharide/protein‐type surfactants suggest that they could be used as emulsifiers to prepare oil‐in‐water emulsions displaying good stability.  相似文献   

6.
Nonionic Schiff base surfactants were synthesized by chemical modification of tannic acid. The surface activities of the synthesized surfactants were determined using surface tension, interfacial tension, and emulsification properties. Thermodynamic parameters of adsorption and micellization of these surfactants showed their tendency towards the two processes with greater predominance of adsorption over micellization. Electrochemical polarization and impedance measurements showed that the surfactants exhibited good tendency towards inhibiting the dissolution of carbon steel in acidic medium. The inhibition efficiencies depend on the chemical structure and concentration of the compounds.  相似文献   

7.
Our present research describes the surface properties of three biobased anionic surfactant synthesized from vinylguaiacol and 11-bromo undecanoic acid. To further improve its hydrophobicity and bioavailability, amino acid head group incorporation was carried out. All these synthesized compounds were thoroughly characterized using NMR and mass spectroscopy. The performance properties such as foaming, wetting, emulsification value and calcium tolerance were evaluated. The studied surfactants possess excellent emulsion stability and moderate calcium tolerance as compared to commercially available surfactant sodium lauryl sulfate (SLS). The micelle formation and the thermodynamics involved at the air–water interface were estimated from surface tension measurements. These surfactants showed a higher tendency towards adsorption at the air–water interface than micellization. Dynamic light scattering and steady state fluorescence anisotropy study were carried out to shed light on the bulk micellization properties of the synthesized surfactant. Along with spherical micelles of <5 nm size, larger aggregates (35–84 nm) were observed with higher anisotropy values. FESEM images further confirmed the larger spherical micelles formed by these surfactants. The surfactants formed chiral aggregates above the critical micelle concentration as indicated by circular dichroism spectra. These surfactants may be suitable candidates for additives to detergents to improve their calcium tolerance especially in the case of hard water. Furthermore, a low foaming ability along with high emulsion stability may find these surfactants to be better replacement of the conventional surfactant used as emulsifiers in many industrial applications.  相似文献   

8.
A series of novel cationic gemini surfactants were synthesized from corresponding amido-amines in a single step reaction. The amido-amines were obtained from long chain carboxylic acids and 3-N,N-dimethylamino-1-propyl-amine with excellent isolated yield (up to 95 %). All the synthesized quaternary ammonium compounds (QACs) were further investigated for surface active properties. The critical micelle concentration (CMC) and the effectiveness of surface tension reduction were determined. The surface tension measurements of newly synthesized gemini surfactants showed good water solubility, and low CMC values, had great efficiency in lowering the surface tension and a strong adsorption at the air/water interface than the corresponding monomeric surfactants. Further, the antibacterial activity of the synthesized QACs against both Gram-positive and Gram-negative bacteria was also investigated.  相似文献   

9.
In this study, different cationic surfactants were prepared by reacting dodecyl bromide with tertiary amines to produce a series of quaternary ammonium salts that were converted subsequently to stannous and cobalt cationic complexes via complexing them with stannous (II) or cobalt (II) ions. Surface properties such as surface- and interfacial-tension, and the emulsifying power of these surfactants were investigated. The surface parameters including critical micelle concentration, maximum surface excess, minimum surface area, tension lowering efficiency and effectiveness were studied. The free energy of micellization and adsorption were calculated. Antimicrobial activity was determined via the inhibition zone diameter of the prepared compounds, which was measured against six strains of a representative group of microorganisms. The antimicrobial activity of some of the prepared surfactants against sulfate reducing bacteria was determined by the dilution method. FTIR spectra, elemental analysis and a H1 NMR spectrum were examined to confirm compound structure and purity. The results obtained indicate that these compounds have good surface properties and good biocidal effect on broad spectrum of micro organisms.  相似文献   

10.
A series of trimeric sulfonate surfactants 1,2,3-tri(2-oxypropylsulfonate-3-alkylether-propoxy) propanes were prepared by the reaction of glycerin triglycidyl ether with long-chain alcohols, followed by sulfonation with 1,3-propane sultone. Glycerin triglycidyl ether was synthesized by the reaction of epichlorohydrin with glycerin. The chemical structures of the prepared compounds were confirmed by FTIR, 1H NMR and element analysis. Their solution properties were characterized by use of the method of equilibrium and dynamic surface tension, steady-state fluorescence spectroscopy of pyrene and fluorescence quenching. With the increasing length of the carbon chain, the values of their CMC initially decreased. All these trimeric sulfonate surfactants had good water solubility. These compounds were superior in surface active properties to the reference surfactant SDS. The efficiency of adsorption at the water/air interface (pC20) of these surfactants was very high. It is found that the shorter hydrocarbon chain length of the trimeric sulfonate surfactants, the faster the rate of decrease of surface tension, and the bigger the aggregation number of the trimeric sulfonate surfactants.  相似文献   

11.
Four anionic gemini surfactants of the sulfate type C12CnC12, where n is the spacer chain length (n = 3, 4, 6, and 10) were synthesized. The structures of these surfactants were confirmed by FT‐IR, 1H NMR, ESI mass spectra (ESI‐MS), and elemental analysis. The surface‐active properties of these compounds were investigated by means of surface tension, electrical conductivity, and fluorescence measurements. Premicellar aggregations were found for the four gemini surfactants, as revealed by the conductivity measurement. The formation of premicellar aggregates may account for the discrepancy between the critical micelle concentration (cmc) obtained by the surface tension and conductivity measurement. The cmc values of these gemini surfactants were much lower than that of sodium dodecylsulfate (SDS) and decreased monotonously with the increase of spacer chain length from 3 to 10. The effect of spacer chain length on the performance properties like foaming, emulsion stability, and lime soap dispersing ability were also studied and discussed. Practical applications : Alkyl sulfate surfactants are one of the most widely used surfactants. The new alkyl sulfate gemini surfactants synthesized in our study are more surface‐active than sodium dodecylsulfate. These gemini surfactants possess low critical micelle concentrations, high emulsion stability, and excellent lime soap dispersing ability. They have potential applications in the fields of cosmetics, detergents, etc.  相似文献   

12.
Two series of cationic gemini surfactants, alkanediyl-α,ω-bis[N,N-dimethyl alkyl (octyl or dodecyl)ammonium] dibromide (R-s-R; s = 6, 10, 12 and R = 8 and 12) were prepared and evaluated as additives for water-based mud. The chemical structures of the prepared surfactants were confirmed using FTIR and mass spectroscopy. Surface activity of these compounds has been studied and their surface properties including surface tension, emulsification power, critical micelle concentration, effectiveness, maximum surface excess and minimum surface area were determined. The results showed that the prepared compounds have significant surface activity, especially those of longer hydrophobic chain length. The prepared cationic gemini surfactants were evaluated as viscosifiers and filter loss additives for water-based mud formulated from local Na-montmorillonite clay. XRD analysis was carried out to the Na-montmorillonite clay to determine the interaction of the surfactants with inter layers of the clay structure. Rheological properties, gel strength, thixotropy, filtration properties and the effect of temperature on rheological properties of the water-based mud were studied. The results indicated that the gemini surfactants have a positive effect on the rheological and filtration properties of the Na-montmorillonite clay according to American Petroleum Institute specifications.  相似文献   

13.
In this work we report the synthesis of a new family of surfactants based on aryl alkyl disulfonates; the latter compounds were derived from a mixture of linear alkylbenzene with the resulting disulfonate groups residing on the linear alkyl side-chain rather than the usual aromatic ring structure. The Reed sulfochlorination reaction was successfully utilized to selectively promote the formation of disulfonates on the alkyl group. A number of analytical methods in the form of liquid chromatography–mass spectrometry (LC–MS), gas chromatography–mass spectrometry (GC–MS), Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) were used to characterize the resulting compounds and intermediates. The critical micelle concentration, the surface tension at the critical micelle concentration, the surface excess concentration at surface tension, and the area per molecule were measured at different concentrations and temperatures. Thermodynamic parameters and Krafft temperature were also determined. The obtained results were compared to those of commercial n-dodecylbenzene sulfonates and linear alkylbenzene sulfonates surfactants, showing that these new synthesized surfactants present good surface properties.  相似文献   

14.
A new group of anionic surfactants, namely sodium salts of secondary alkanesulfonamidoacetic acid, were synthesized using n-alkanesulfonyl chlorides as starting materials. These surfactants, having the formula: R–SO2–NH–CH2–COONa, with R = C12, C14, C16 and C18, were obtained in a simple way with quantitative yields. Different chain lengths and positional isomers of this new type of surfactants are expected to present differences in surface properties and foamability. The surface properties including critical micelle concentrations and minimal surface tensions γmin were determined for each prepared surfactant using surface tension measurements with a Wilhelmy plate. Surface excess and minimum area per molecule at the air–water interface were determined for different concentrations at 25 and 50 °C using the Gibbs equation. The foaming power was also determined by the Bartsch method, and the results obtained were compared to those of a commercial surfactant, the linear alkylbenzenesulfonate. The stability of the foam formed was also evaluated. As expected, these surfactants exhibit good surface properties and show good foaming power.  相似文献   

15.
A series of anionic gemini surfactants with the same structure except the spacer nature have been studied. Their solution properties were characterized by the equilibrium surface tension and intrinsic fluorescence quenching method. The critical micelle concentrations (CMC), surface tension at cmc, C20, and the micelle aggregation number (N) were obtained. The surface tension measurements indicate that these gemini surfactants have much lower cmc values and great efficiency in lowering the surface tension of water compared with those of conventional monomeric surfactants. Furthermore, the standard free energy of micellization for anionic gemini surfactants was also determined. The results showed that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in aqueous solutions. The surfactant with a hydrophilic, flexible spacer was more readily able to form micelle compared with the surfactant with a hydrophobic, rigid spacer, which leads to a lower CMC value, larger N, more negative free energy of micellization, and a more closely packed micelle structure.  相似文献   

16.
A series of novel zwitterionic phosphobetaine (PPBT) surfactants were synthesized using long chain fatty alcohol, epichlorohydrin, dimethylamine and sodium dihydrogen phosphate as raw materials. The physicochemical properties of the phosphobetaine surfactants such as isoelectric point, foaming, surface tension, critical micelle concentration (CMC) and Krafft point were measured. Low CMC and surface tension values indicated the surface activities of the phosphobetaine surfactants were quite excellent. The CMC and surface tension values of PPBT/SDS mixed systems were determined. It was found both of CMC and surface tension values decreased compared with single surfactant system because of the association between dodecyl sulfate anions and cationic groups in phosphobetaine by electrostatic attraction.  相似文献   

17.
A new series of cationic Schiff bases was synthesized and their chemical structures were confirmed using elemental analysis, infrared spectra and nuclear magnetic resonance. The surface properties of the surfactant solutions including surface tension, effectiveness, efficiency, critical micelle concentration, maximum surface excess and minimum surface area were calculated using surface tension-log concentration profiles. The surface parameters were strongly dependent on the hydrophobic chain length. The thermodynamic properties of the surfactants in their solutions showed the spontaneous behavior of both adsorption and micellization processes. The thermodynamic data revealed that the adsorption of the surfactant molecules at the air/water interface was more favorable than the micellization in the bulk of their solutions. The synthesized surfactants were evaluated with regard to their preventing the corrosion reaction of carbon steel in acidic media and also their acting as antibacterial biocides to inhibit bacterial growth. The data of corrosion and antibacterial evaluations showed the high efficiency and applicability of these compounds in these uses.  相似文献   

18.
Preparation and properties of new lactose-based surfactants   总被引:1,自引:0,他引:1  
A new group of nonionic saccharide-based surfactants, N-alkanoyl-N-methyllactitolamines (alkanoyl: decanoyl, lauroyl, myristoyl, palmitoyl, stearoyl), were synthesized and characterized. Surface properties such as critical micelle concentration, standard free energy of adsorption, standard free energy of micellization, surface tension reduction efficiency, effectiveness of surface tension reduction, surface excess concentration, and surface area demand per molecule as well as foaming properties (i.e., foam volume and foam stability), contact angle, antiraicrobial activity, and biodegradability were determined. The selected performance properties were evaluated in relation to commercially available alkyl polyglucosides (Glukopon 600 EC(HH)-a Henkel product), and oligooxyethylenated decyl (C10E4) and dodecyl (E12E5) alcohols. The foaming-stabilizing effect and contact angle suggest that the lactose-derived surfactants that were studied share some common properties with alkyl polyglucosides that are different from those with an oligooxyethylene grouping. All tested N-alkanoyl-N-methyllactitolamines were practically nontoxic to bacteria and yeasts. These compounds are readily biodegradable in the Closed Bottle test inoculated with activated sludge. N-Alkanoyl-N-methyllactitolamines with lower chain lengths (C10–C14) biodegraded at a slightly faster rate. Biological properties showed that this class of compounds fulfills all requirements needed for environmental acceptance.  相似文献   

19.
New amido nonionic cleavable surfactants were synthesized in good yields by the acetalization of glucono-1,5-lactone with octanal, 2-octanone or 2-undecanone, followed by amidation with monoethanolamine, diethanolamine or morpholine. These compounds possessed good water solubilities. The compounds derived from 2-octanone showed higher critical micelle concentrations than the compounds from octanal. For the same hydrophobic chain, both the micelle-forming property and the ability to lower surface tension increased with the change in the terminal amide group in the order diethanolamide<morpholide<monoethanolamide. Interestingly, in spite of their relatively short hydrophobic chains, these compounds showed greater ability to lower surface tension than conventional nonionic surfactants, such as alcohol ethoxylates. Furthermore, their acid-decomposition properties were determined. Their decomposition rates were also compared with that of the corresponding carboxylate type of compound derived from glucono-1,5-lactone.  相似文献   

20.
Results of studying adhesive properties of epoxy resins modified with surfactants are reported. It is shown that surfactants with terminal fluorinated fragments have the highest activity. Ethers of a fluorine-containing telomeric alcohol and glycidol are employed as the surfactants. The surface tension is measured by the Rehbinder maximum bubble pressure method. The results of measuring surface tension and contact angles are presented. It is established that the use of organofluorine compounds with reactive groups makes it possible not only to decrease the surface tension, but also to “fix” molecules of these compounds at interfaces in the course of curing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号