首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
低压条件下纳米流体的沸腾换热特性   总被引:1,自引:1,他引:0  
在不同低压压力和不同纳米流体浓度下对光滑传热面上的水基纳米流体的池内沸腾特性进行了试验研究.纳米流体由平均直径50 nm的氧化铜粒子加入去离子水中组成,没有加入任何添加剂.研究主要针对7.2 kPa到100kPa的压力区间和0.1%到2%的质量浓度区间内压力和颗粒浓度对光滑表面沸腾换热特性的影响,研究结果表明:压力对纳米流体的沸腾换热特性有强烈影响,沸腾换热系数和临界热流密度(CHF)强化率随着压力的降低而大幅度增加.纳米流体浓度对沸腾换热系数和临界热流密度(CHF)有重要影响,并且在质量浓度约1%附近存在一个最佳颗粒浓度.研究结果显示由与去离子水相比,质量分数为1%,压力为7.2 kPa的纳米流体在光滑表面上的沸腾换热系数和临界热流密度都得到了显著提高.  相似文献   

2.
测试了水基石墨烯纳米流体的部分热物性,研究了不同浓度、雷诺数(Re)和加热功率条件下水基石墨烯纳米流体作为换热工质在设计的矩形结构小槽道内的对流换热性能。结果表明,层流状态(Re=500~2000)下,矩形槽道壁面温度随Re增大逐渐降低,随加热功率增大逐渐升高,与常规流体换热特性一致;在相同Re和换热功率条件下,随纳米流体浓度增大,壁温逐渐减小;水基石墨烯纳米流体的换热强度比基液去离子水提升较大,Re=2000、加热功率为210 W时,浓度为0.03wt%的水基石墨烯纳米流体的平均努塞尔数(Nu)为9.3,比基液水提升48.8%;受入口效应影响,沿槽道长度局部对流换热系数逐渐减小,最高可达25674.5 [W/(m2?℃)],较基液水最大可提高39.1%;Re=500~1400时,石墨烯纳米流体的流动换热强度随Re增大明显增强;由实验数据结合理论模型拟合了适用于石墨烯纳米流体对流换热强度的计算式,计算结果与实验结果最大相对误差不超过25%,平均相对误差仅为4.8%。  相似文献   

3.
制备了粒径为50 nm的ZrO2-水纳米流体,并通过添加分散剂NH4PAA改善纳米流体的稳定性。测量了4种不同质量分数(0.2%,0.4%,0.8%,1.2%)的ZrO2-水纳米流体在层流状态下的对流换热系数。实验结果表明:在相同雷诺数下,纳米流体的换热系数要比纯水的有所提高,并随着ZrO2纳米颗粒质量分数的增加而增大。当纳米流体的质量分数为0.2%,0.4%,0.8%,1.2%时,其平均换热系数比纯水分别提高了1.9%,2.4%,5.2%和8.8%。实验管道内的不同位置也影响纳米流体换热系数的提高,入口段的换热系数要比充分发展段提高得更明显,其主要原因是纳米颗粒对流体边界层的干扰。  相似文献   

4.
氧化铝有机纳米流体的流动传热基础特性   总被引:1,自引:0,他引:1       下载免费PDF全文
钟勋  俞小莉  吴俊 《化工学报》2009,60(1):35-41
以氧化铝为纳米粒子、丙二醇和水为基础液体制备了氧化铝有机纳米流体,分别测量了它的沸点、热导率、比热容和黏度。以1%~5%(体积分数)的氧化铝纳米流体作为冷介质,测试了在车用机油冷却器中的传热系数和流动阻力。试验结果表明,纳米粒子能够显著强化基础液体在机油冷却器中的换热能力,粒子体积分数和流体温度是影响纳米流体热物性的重要因素。氧化铝纳米流体的沸点高于120℃,比热容随体积分数增加而降低,热导率、黏度和在机油冷却器中的传热系数均随粒子体积分数的增加而提高。在试验Ⅱ中,5%(体积分数)纳米流体的平均传热系数比基础液体提高了124.56%,而流动阻力增幅较小。  相似文献   

5.
对CeO2纳米流体进行了池沸腾传热特性研究,考察了CeO2/水基纳米流体的热导率,静态接触角以及沸腾后表面沉积情况对沸腾传热的影响。结果表明,CeO2纳米流体可提高沸腾传热系数,且纳米流体最佳质量分数为0.05%,其沸腾传热系数较去离子水提高36%。热导率以及接触角随纳米流体质量分数的增加而增加,在本实验范围内,热导率最大增加1%;而纳米流体接触角从50.5°增加到92.9°;表面沉积随纳米流体的质量分数增加越来越明显,去离子水在沉积表面的接触角发生较大变化(51.4°~134.4°)。纳米流体的热导率影响可忽略不计;而接触角和沸腾表面颗粒沉积对纳米流体的强化传热作用影响较大。  相似文献   

6.
The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size.  相似文献   

7.
Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance.  相似文献   

8.
采用超声膜扩散法一步制备出水基Ag纳米流体作为实验工质,并对不同质量分数的Ag纳米流体在受限浸没阵列射流冲击针肋热沉中的流动和换热特性进行了实验研究.结果表明:采用超声膜扩散法制备的Ag纳米颗粒粒径分布均匀,平均粒径只有4.8 nm;表面活性剂对纳米流体的黏度影响较大;相同射流速度下,与基液(水+表面活性剂)相比,Ag...  相似文献   

9.
Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density.  相似文献   

10.
This study was performed to investigate the convective heat transfer coefficient of nanofluids made of several alumina nanoparticles and transformer oil which flow through a double pipe heat exchanger system in the laminar flow regime. The nanofluids exhibited a considerable increase of heat transfer coefficients. Although the thermal conductivity of alumina is not high, it is much higher than that of the base fluids. The nanofluids tested displayed good thermal properties. One of the possible reasons for the enhancement on heat transfer of nanofluids can be explained by the high concentration of nanoparticles in the thermal boundary layer at the wall side through the migration of nanoparticles. To understand the enhancement of heat transfer of nanofluid, an experimental correlation was proposed for an alumina-transformer oil nanofluid system.  相似文献   

11.
Heat dissipation from electrical appliances is a significant issue with contemporary electrical devices. One factor in the improvement of heat dissipation is the heat transfer performance of the working fluid. In this study, we used plasma arc technology to produce a nanofluid of carbon nanoparticles dispersed in distilled water. In a one-step synthesis, carbon was simultaneously heated and vaporized in the chamber, the carbon vapor and particles were then carried to a collector, where cooling furnished the desired carbon/water nanofluid. The particle size and shape were determined using the light-scattering size analyzer, SEM, and TEM. Crystal morphology was examined by XRD. Finally, the characterization include thermal conductivity, viscosity, density and electric conductivity were evaluated by suitable instruments under different temperatures. The thermal conductivity of carbon/water nanofluid increased by about 25% at 50°C compared to distilled water. The experimental results demonstrated excellent thermal conductivity and feasibility for manufacturing of carbon/water nanofluids.  相似文献   

12.
吴晗  杨峻 《化工学报》2017,68(6):2315-2320
在考虑了纳米层的情况下对原有的Xue导热模型进行改进,研究多壁碳纳米管-水纳米流体的热传导性能,推导出纳米流体导热公式并将纳米流体运用到碳钢重力热管中,在不同质量分数下对单管传热进行实验研究。结果表明纳米层的存在提高了有效热导率;在相同条件下质量分数2%的多壁碳纳米管-水纳米流体重力热管传热性能最好,传热系数比普通水重力热管最大提高了40%。  相似文献   

13.
This paper presents a study of heat transfer performance of water, ethylene glycol (EG) and their mixtures of varying compositions and comparison thereof. The present work demonstrates the enhancement in convective heat transfer in nanofluids. The nanofluids were prepared by adding TiO2 nanoparticles (having a particle size below 100 nm) in a base fluid. A binary mixture of EG (40%) and water (60%) was used as a base fluid. Nanofluids with varied volume fraction between 0 and 0.5 (volume fraction of TiO2 nanoparticles) were considered in the present study. The experimental setup used was consisting of a test section that includes 750 mm long copper pipe with 8 mm inner diameter and a heater. The test section was covered with an insulation layer to minimize the heat losses. Temperature measurement was done with thermocouples. The experiments were conducted to study the effects of solid volume fraction, nanofluid flow rate and the inlet temperature on the heat transfer performance of the nanofluids. The results show an enhancement in heat transfer coefficient with increased volume fraction of TiO2 nanoparticles. The maximum enhancement of 105% in heat transfer coefficient was observed for the nanofluid with solid volume fraction of 0.5.  相似文献   

14.
《分离科学与技术》2012,47(11-12):3036-3055
Abstract

This study focused on the synthesis of stable nanofluids and their direct application to the CO2 absorption process. A sol-gel process was used as the synthesis method of nanoparticles in nanofluid. The particle size and stability were determined by SEM image and zeta potential of the nanofluid. Three types of nanofluids containing approximately 30 nm, 70 nm, and 120 nm particles were synthesized and all nanofluids had a stable zeta potential of approximately ? 45 mV. Addition of nanoparticles increased the average absorption rate of 76% during the first 1 minute and total absorption amount of 24% in water. The capacity coefficient of CO2 absorption in the nanofluid is 4 times higher than water without nanoparticles, because the small bubble sizes in the nanofluid have large mass transfer areas and high solubility.  相似文献   

15.
通过加入不同种类和体积分率的惰性粒子,在垂直管中进行了水的流动沸腾传热实验,研究了三相流沸腾传热特性。实验中预先对水加热,采用了沸点进料。实验发现,传热膜系数随热通量、液体流量的增加及粒子体积分率的增大而增加。对于不同粒子,这种变化趋势比较一致,但不同粒子对沸腾传热的强化效果不同。实验结果表明:由于固体粒子的存在,强化了沸腾传热,三相流沸腾传热系数是相同条件下汽液二相流沸腾传热系数的1.3—1.7倍。  相似文献   

16.
通过络合-沉淀法合成氧化铜纳米颗粒,制备铜颗粒的直径在40~100 nm,晶型为正六面体。利用“两步法”制备水基氧化铜纳米流体。考察了不同质量分数纳米流体的热导率、接触角变化和加热表面颗粒沉积对核沸腾传热性能的影响,并利用可视化记录沸腾过程气泡行为。结果表明:在测试质量分数范围内,传热系数随热通量增加而增大,当质量分数达到0.1%时,强化率最大为146.1%。经过分析可知纳米流体的接触角度、热导率、颗粒沉积以及颗粒扰动对水基氧化铜纳米流体强化传热作用均有影响。通过高速摄像采集质量分数0.07%纳米流体沸腾过程验证结论的可靠性。并对纳米流体核沸腾传热过程建立气泡动力学经验模型,模型计算结果与实测值相对偏差在±10%以内。  相似文献   

17.
In this work, the effect of baffles in a pipe on heat transfer enhancement was studied using computational fluid dynamics (CFD) in the presence of Al2O3 nanoparticles which are dispersed into water. Fluid flow through the horizontal tube with uniform heat flux was simulated numerically and three dimensional governing partial differential equations were solved. To find an accurate model for CFD simulations, the results obtained by the single phase were compared with those obtained by three different multiphase models including Eulerian, mixture and volume of fluid (VOF) at Reynolds numbers in range of 600 to 3000, and two different nanoparticle concentrations (1% and 1.6%). It was found that multiphase models could better predict the heat transfer in nanofluids. The effect of baffles on heat transfer of nanofluid flow was also investigated through a baffled geometry. The numerical results show that at Reynolds numbers in the range of 600 to 2100, the heat transfer of nanofluid flowing in the geometry without baffle is greater than that of water flowing through a tube with baffle, whereas the difference between these effects (nanofluid and baffle) decreases with increasing the Reynolds number. At higher Reynolds numbers (2100–3000) the baffle has a greater effect on heat transfer enhancement than the nanofluid.  相似文献   

18.
Titanate nanotubes of an aspect ratio of ~ 10 are synthesized, characterised and dispersed in water to form stable nanofluids containing 0.5, 1.0 and 2.5 wt.% of the nanotubes. Experiments are then carried out to investigate the effective thermal conductivity, rheological behaviour and forced convective heat transfer of the nanofluids. The results show a small thermal conductivity enhancement of ~ 3% at 25 °C and ~ 5% at 40 °C for the 2.5 wt.% nanofluid. The nanofluids are found to be non-Newtonian with obvious shear thinning behaviour with the shear viscosity decreasing with increasing shear rate at low shear rates. The shear viscosity approaches constant at a shear rate higher than ~ 100-1000 s− 1 depending nanoparticle concentration. The high shear viscosity is found to be much higher than that predicted by the conventional viscosity models for dilute suspensions. Despite the small thermal conduction enhancement, an excellent enhancement is observed on the convective heat transfer coefficient, which is much higher than that of the thermal conductivity enhancement. In comparison with nanofluids containing spherical titania nanoparticles under similar conditions, the enhancement of both thermal conductivity and convective heat transfer coefficient of the titanate nanotube nanofluids is considerably higher indicating the important role of particle shape in the heat transfer enhancement. Possible mechanisms are also proposed for the observed enhancement of the convective heat transfer coefficient.  相似文献   

19.
孙斌  董爽  杨迪  李洪伟 《化工进展》2019,38(3):1207-1217
实验研究了多壁碳纳米管(MWCNT)-水/乙二醇纳米流体在汽车散热器中的传热特性。在80%/20%的水/乙二醇基液中制备了5种不同体积分数(0.05%,0.1%,0.15%,0.3%和0.5%)的MWCNT纳米流体,通过研究超声波振荡时间对纳米流体稳定性的影响得出,超声波的振荡时间为1h时,纳米流体的稳定性较为良好。将体积分数为0.15%的纳米流体分别添加十二烷基苯磺酸钠(SDBS)和十六烷基三甲基氯化铵(CTAC)作为分散剂进行稳定性实验,分别采用目测法和透射比法来评价纳米流体的稳定性,选出分散效果较好的分散剂种类和添加量并评价了两种纳米流体的稳定性,结果表明:CTAC的添加量为质量分数0.05%、SDBS的添加量为0.1%时,纳米流体的分散效果较好,并且CTAC的分散效果优于SDBS。分别使用单因素实验设计和正交实验设计对不同浓度的纳米流体在不同流速、温度下的传热特性进行分析,纳米流体的体积流量为2~6L/min,入口温度为45~65℃。结果表明,与基液相比,纳米流体的传热速率有了明显的提高,在本实验的最佳工况下(体积分数0.5%,6L/min,65℃),传热速率可提升35.24%。使用熵值法计算出纳米流体的传热速率、压降和有效泵功的权重分别为0.626、0.035、0.340。基于多指标综合评价方法得出,与纳米流体的传热速率增加相比,纳米流体浓度对压降和有效泵功的不利影响可以忽略不计。  相似文献   

20.
减阻型纳米流体在圆管内的流动和换热特性   总被引:1,自引:1,他引:0       下载免费PDF全文
孙斌  张志敏  杨迪  李洪伟 《化工学报》2015,66(11):4401-4411
实验测定了在Reynolds数4000~16000范围内,质量分数0~0.5%的石墨、多壁碳纳米管、Al2O3、Cu、Al、Fe2O3、Zn纳米粒子加入到100~400 mg·kg-1浓度的十六烷基三甲基氯化铵(CTAC)减阻剂中所制备的减阻型纳米流体的摩擦阻力系数和对流传热系数。结果表明:在CTAC中加入水杨酸钠(NaSal)与去离子水所配制的减阻剂具有一定的稳定性和很强的减阻特性,当减阻剂浓度为200 mg·kg-1时其减阻特性最优。石墨纳米粒子在增强对流换热和减少流动阻力方面具有较佳的综合性能,当石墨纳米颗粒质量分数为0.4%时,其综合性能因子K是去离子水的5倍。最后给出了减阻型石墨纳米流体在圆管内的流动阻力和换热关联式,其计算值和实验值吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号