首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A series of 4-substituted N-(2-mercaptophenyl)salicylideneimine Schiff bases were synthesized and investigated for corrosion inhibition of mild steel in hydrochloric acid medium. Inhibition through adsorption mechanism is proposed for these inhibitors, which is well supported by electrochemical impedance spectroscopy, the Langmuir adsorption isotherm and Scanning Electron Microscope morphologies of inhibited and uninhibited mild steel specimens. The negative ?G ads indicates the spontaneous adsorption of the inhibitor on a mild steel surface. Among all the examined inhibitors, 5-bromo-N-(2-mercaptophenyl)salicylideneimine showed a higher inhibition efficiency. In order to reveal the usefulness of these Schiff bases as corrosion inhibitors under various circumstances, weight loss measurements were performed at various temperatures, acid concentrations and immersion times.  相似文献   

2.
Synergistic result of cationic gemini surfactant (GS) 1,2-bis(N-hexadecyl-N,N-dimethylammonium) ethane dibromide (16-2-16) and organic salt (Sodium tosylate; NaTos) on mild steel corrosion in 1?M HCl solution at various temperatures (30, 40, 50 and 60?°C) has been examined using gravimetric, electrochemical and surface morphology measurement. Investigational result shows that the inhibition efficiency (η) of 16-2-16 GS enhanced in the existence of a set quantity of NaTos. The synergism parameter (Sθ) values are larger than unity, representing large inhibition efficiency, generated via the accumulation of NaTos to 16-2-16 GS is owing to adsorption supportive. The electrochemical results revealed that the 16-2-16 GS in the absence and presence of NaTos act as mixed-type inhibitors. The inhibitor adsorption on the mild steel surface in 1?M HCl solution obeys Langmuir adsorption isotherm. Surface morphology was studied using scanning electron microscopy (SEM).  相似文献   

3.
The corrosion inhibition of ampicillin (AMP) and its synergistic combination with halides (KI, KCl and KBr) for the corrosion of mild steel in H2SO4 have been investigated using gravimetric, gasometric, thermometric and infrared (IR) methods. The inhibition efficiencies of AMP for the corrosion of mild steel increased with increase in concentration but decreased with rise in temperature. The adsorption of AMP on the mild steel surface was found to obey the Langmuir adsorption isotherm model. The combination of AMP with the halides (KI, KBr and KCl) enhanced the inhibition efficiency and adsorption behavior of the inhibitor indicating synergism. The inhibition efficiency of AMP increased with increasing concentration and the adsorption of the inhibitor was spontaneous. Physical adsorption mechanism has been proposed from the thermodynamic data obtained. There was a significant correlation between the inhibition efficiency of AMP and some quantum chemical parameters (R 2 = 0.96) using the quantitative structure–activity relationship (QSAR) method. Some quantum chemical parameters and the Mulliken charge densities on the optimized structure of AMP were calculated using the B3LYP/6-31G (d,p) basis set method to provide further insight into the mechanism of the corrosion inhibition process.  相似文献   

4.
The inhibition effect of 1-(2-Hydroxyethyl)-2-imidazolidinone (2-HEI) on mild steel (MS) corrosion in 0.5?M HCl solution was investigated at different inhibitor concentration and temperature by electrochemical experiments, such as linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and quantum chemical calculations. The inhibitor adsorption process on mild steel in 0.5?M HCl system was studied at different temperatures (20?°C–50?°C). Furthermore, the surface morphology of MS was also investigated with SEM in the absence and the presence of inhibitor. The adsorption of 1-(2-Hydroxyethyl)-2-imidazolidinone on MS surface is an exothermic process and this process obeys the Langmuir adsorption isotherm. The Quantum chemical findings are good agreed with the empirical data.  相似文献   

5.
The corrosion inhibition of mild steel in 1 mol·L?1 hydrochloric acid by N-methyl-2-(2-nitrobenzylidene) hydrazine carbothioamide (MNBHC) was studied using weight loss and electrochemical studies. Results obtained indicate that the inhibitor is effective in hydrochloric acid medium and the efficiency decreases with increase in temperature. Added halide additives improve the efficiency of the inhibitor. The AC impedance studies reveal that the process of inhibition is through charge transfer. Polarization studies indicate the mixed nature of the in-hibitor. From the thermodynamic, spectral and surface analyses the nature of adsorption has been found out. The adsorption of the inhibitor on mild steel follows the Langmuir isotherm.  相似文献   

6.
The current research work was keen to examine the corrosion inhibition efficiency of mild steel (MS) in presence of aqueous extract of Araucaria heterophylla Gum (AHG) in 1?M H2SO4 medium. The phytoconstituents of the AHG were interpreted by GC-MS and corrosion inhibition efficiency was deduced using other techniques like weight loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS). Adsorption of inhibitor molecules on the mild steel surface was supported by Density Functional Theory (DFT) studies, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). It is seen from the results that the inhibitor exhibits optimum efficiency of 78.57% at 0.05% v/v on mild steel specimen in 1?M H2SO4 medium at room temperature. Tafel polarizations clearly show that the aqueous extract of AHG acts as a mixed type inhibitor. The change in the EIS parameters in presence of inhibitor is investigative of the protective layer formation of the mild steel surface. The adsorption is found to obey Langmuir adsorption isotherm. Thermodynamic and activation parameters for the corrosion inhibition process supported the physical adsorption mechanism.  相似文献   

7.
The performance of 1-[(2-hydroxyethyl) amino]-2-(salicylideneamino)ethane (HAS) as a corrosion inhibitor for carbon steel in CO2-saturated 3.0% NaCl solution under aerated and deaerated conditions was studied using weight loss and potentiodynamic polarization methods at different temperatures. The results obtained show that in aerated environment, HAS acts as an effective corrosion inhibitor for carbon steel in CO2-saturated brine solution and accelerate corrosion under deaerated condition. Inhibition efficiency (IE%) increased with increase in HAS concentration but decreased with increase in temperature. Corrosion inhibition action was via the adsorption of HAS on the metal’s surface which follows the Langmuir adsorption isotherm model. Polarization curves indicate that HAS functions as a mixed-type inhibitor.  相似文献   

8.
Tramadol[2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol hydrate], a drug, was tested as a corrosion inhibitor for mild steel in 0.5 M HCl and 0.25 M H2SO4 separately at 300, 310 and 320 K using mass loss and galvanostatic polarization techniques. The percentage protection efficiencies were evaluated at different concentrations of the inhibitor at different temperatures. The protection efficiency increased with increase in inhibitor concentration and decreased with increase in temperature in both the acid solutions. Galvanostatic polarization studies showed that the inhibitor is of mixed type with a slight predominance of cathodic character. The inhibitor was more active in HCl than in H2SO4. The maximum protection efficiency approached 82.6% in the presence of 2.16 × 10−3 M inhibitor. Some samples of mild steel were examined by scanning electron microscopy. The inhibitor was found to adsorb on the mild steel surface according to the Langmuir adsorption isotherm. The thermodynamic functions of dissolution and adsorption processes were evaluated.  相似文献   

9.
Corrosion inhibitory action of Commiphora caudata extract on the mild steel corrosion in 1 M H2SO4 acid medium is investigated by weight loss and electrochemical studies. The weight loss method shows that the inhibition efficiency increases with the increase of inhibitor concentration, time, and temperature. The polarization studies reveal that the extract acts as a mixed type inhibitor. In electrochemical impedance measurement, the semicircle curves indicated that the charge transfer process controlled the corrosion of mild steel. Thermodynamic parameter such as free energy value was negative, that indicates spontaneous adsorption of inhibitor on mild steel surface. In the presence of inhibitor decreases the activation energy value which shows the chemical adsorption. The Commiphora caudata extract is found to obey Langmuir adsorption isotherm. Scanning electron microscopy, FTIR, and Quantum chemical studies confirmed that the mild steel protect from the corrosion by adsorption of the inhibitor molecules on surface of metal.  相似文献   

10.
The influence of 1(2E)-1-(4-aminophenyl)-3-(2-thienyl)prop-2-en-1-one (ATPI) on the corrosion behavior of weld aged maraging steel in 1.5 M hydrochloric acid was studied by potentiodynamic polarization method and AC impedance (EIS) technique at different temperatures. The results showed that the inhibition efficiency of ATPI increased with the increase in the concentration of inhibitor and decreased with the increase in temperature. ATPI acts as a mixed type inhibitor without affecting the mechanism of the hydrogen evolution reaction or iron dissolution. The adsorption of ATPI on a weld aged maraging steel surface obeys the Langmuir adsorption isotherm equation. Both activation and thermodynamic parameters were calculated and discussed. ATPI inhibits the corrosion through both physisorption and chemisorption on the alloy surface. The surface morphology of the weld aged maraging steel specimens in the presence and the absence of the inhibitors was studied by the respective SEM images.  相似文献   

11.
Corrosion inhibition property of N-(phenylcarbamothioyl)benzamide (PCB) on mild steel in 1.0 M HCl solution has been investigated using chemical (weight loss method) and electrochemical techniques (potentiodynamic polarization and AC impedance spectroscopy). The inhibition efficiencies obtained from all the methods are in good agreement. The thiourea derivative is found to inhibit both anodic and cathodic corrosion as evaluated by electrochemical studies. The inhibitor is adsorbed on the mild steel surface according to Langmuir adsorption isotherm. The adsorption mechanism of inhibition was supported by spectroscopic (UV-visible, FT-IR, XPS), and surface analysis (SEM-EDS) and adsorption isotherms. The thermodynamic parameter values of free energy of adsorption (ΔGads) reveals that inhibitor was adsorbed on the mild steel surface via both physisorption and chemisorption mechanism.  相似文献   

12.
An example of a new class of corrosion inhibitors, namely, 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole (DAPT) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 at 30 °C was investigated by various corrosion monitoring techniques. A preliminary screening of the inhibition efficiency was carried out using weight loss measurements. At constant acid concentration, inhibitor efficiency increases with concentration of DAPT and is found to be more efficient in 0.5 M H2SO4 than in 1 M HCl. Potentiostatic polarization studies showed that DAPT is a mixed-type inhibitor. The effect of temperature on the corrosion behaviour of mild steel in 1 M HCl with addition of DAPT was studied in the temperature range from 25 to 60 °C. Its was shown that adsorption is consistent with the Langmuir isotherm for 30 °C. The negative free energy of adsorption in the presence of DAPT suggests chemisorption of thiadiazole molecules on the steel surface.  相似文献   

13.
The inhibitive effect of polyacrylamide grafted with fenugreek mucilage, a natural grade polysaccharide, on the corrosion of mild steel in 0.5M H2SO4 has been investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy. An inhibition efficiency of 78% has been obtained at a concentration as low as 1 ppm and efficiency as high as 96% at 100 ppm. The polarization studies reveal that it acts as a predominantly cathodic inhibitor. The adsorption of this inhibitor on the mild steel surface obeys a Langmuir adsorption isotherm. The deposited films on the electrode surface have been analyzed by using microscopic techniques. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The corrosion behaviour of mild steel in 0.5 M H2SO4 solution containing various concentrations of a p-toluene sulphonic acid doped copolymer formed between aniline and o-toluidine was investigated using weight loss, polarization and electrochemical impedance techniques. The copolymer acted as an effective corrosion inhibitor for mild steel in sulphuric acid medium. The inhibition efficiency has been found to increase with increase in inhibitor concentration, solution temperature and immersion time. Various parameters like E a for corrosion of mild steel in presence of different concentrations of inhibitor and ΔG ads, ΔH 0, ΔS 0 for adsorption of the inhibitor, revealed a strong interaction between inhibitor and mild steel surface. The adsorption of this inhibitor on the mild steel surface obeyed the Langmuir adsorption equation.  相似文献   

15.
Due to the harmful nature of the traditional inhibitors, in recent years researchers have an interest in using eco-friendly corrosion inhibitors. The plant extracts exhibit efficient corrosion inhibition properties due to the presence of a mixture of organic constituents starting from terpenoids to flavonoids. In the present study the inhibition of corrosion of mild steel in 1N H2SO4 solution using the leaf extract of Pongamia pinnata (P. pinnata) was investigated by the weight loss method, potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) technique. Characterization of the leaf extract of P. pinnata was carried out using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. The effect of temperature and immersion time on the corrosion behavior of mild steel in sulfuric acid with different concentrations of P. pinnata was also studied. From the results it was found that the inhibition is mainly attributed to the adsorption of inhibitor molecules on the mild steel electrode surface. It was found that the adsorption of inhibitor molecules takes place according to the Langmuir, Temkin, and Freundlich adsorption isotherms. Kinetic as well as thermodynamic parameters were calculated, also confirming the strong interaction between inhibitor molecules and the electrode surface. The inhibition efficiency (I.E in %) was found to increase with increase in concentration of the inhibitor molecules and the maximum inhibition efficiency was attained at 100 ppm of the leaf extract. From the electrochemical studies it was found that the corrosion process was controlled by a mixed inhibition process and single charge transfer mechanism. Fourier transform infrared spectroscopy (FTIR) provided the confirmatory evidence for the adsorption of the extract molecules on the mild steel surface, which is responsible for the corrosion inhibition. Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) experiments also confirmed the presence of inhibitor molecules on the mild steel surface. From all these experimental results, it can be concluded that the leaf extract of P. pinnata acted as a good corrosion inhibitor for mild steel in 1N sulfuric acid medium even at lower inhibitor concentrations.  相似文献   

16.
The acid corrosion inhibition process of mild steel in 1 M HCl by 1-butyl-3-methylimidazolium chlorides (BMIC) and 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) has been investigated using electrochemical impedance, potentiodynamic polarization and weight loss measurements. Potentiodynamic polarization studies indicate the studied inhibitors are mixed type inhibitors. For both inhibitors, the inhibition efficiency increased with increase in the concentration of the inhibitor and the effectiveness of the two inhibitors are in the order [BMIM]HSO4 > BMIC. The adsorption of the inhibitors on mild steel surface obeyed the Langmuir's adsorption isotherm. The effect of temperature on the corrosion behavior in the presence of 5 × 10−3 M of inhibitors was studied in the temperature range of 303-333 K. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy of activation (ΔH), entropy of activation (ΔS), adsorption equilibrium constant (Kads) and standard free energy of adsorption (ΔGads) were calculated to elaborate the mechanism of corrosion inhibition.  相似文献   

17.
Inhibitive and adsorption properties of ethanol extract of Lasianthera africana for inhibition of corrosion of mild steel in H2SO4 were studied using gravimetric, thermometric, gasometric, and infrared (IR) methods. The extract was found to be a good inhibitor of corrosion of mild steel in H2SO4. Inhibitive properties of the extract were attributed to enhancement in adsorption of the inhibitor on mild-steel surface by saponin, alkaloid, tannin, flavanoid, cardiac glycoside, and anthraquinone (present in the extract). Also, adsorption of the inhibitor was found to be exothermic, spontaneous, and consistent with assumptions of Langmuir and Temkin adsorption isotherms. Synergistic study revealed that, of the investigated halides, only KCl may enhance adsorption of the inhibitor, whereas KBr and KI antagonized its adsorption. Based on the decrease in efficiency of the inhibitor with temperature, with values of activation energy and free energy of adsorption below the threshold values of −40 and 80 kJ mol−1, respectively, a physical adsorption mechanism has been proposed for adsorption of ethanol extract of Lasianthera africana on the surface of mild steel.  相似文献   

18.
The corrosion behavior of mild steel in CO2-saturated 5% NaCl solution with N-[2-[(2-aminoethyl) amino] ethyl]-9-octadecenamide corrosion inhibitor at 25 °C has been studied by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) measurements. Both potentiodynamic polarization and EIS measurements reveal that this amido-amine precursor inhibits the carbon steel corrosion and the inhibition efficiency increases with increasing the inhibitor concentration. The corrosion inhibitor exhibits high corrosion efficiencies as a mixed-type inhibitor, with a predominant influence on the anode process. The organic inhibitor acts blocking surface sites at low concentrations and by modifying the adsorption mechanism forming a protective barrier against corrosive ions at high concentrations. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than 0.82 × 10−5 M is by forming a protective bilayer with small pore sizes that hinders the passage of the reactive species. PM-IRRAS measurements demonstrate that the inhibitor is chemisorbed to surface steel. Therefore, its spectrum reveals that the inhibitor monolayer has an amorphous structure.  相似文献   

19.
The inhibition performance of poly (methacrylic acid) (PMAA) and the effect of addition of iodide ions on the inhibition efficiency for mild steel corrosion in 0.5 M H2SO4 solution were investigated in the temperature range of 303–333 K using electrochemical, weight loss, scanning electron microscopy (SEM), and water contact angles measurements. The results show that PMAA is a moderate inhibitor for mild steel in 0.5 M H2SO4 solution. Addition of small amount of KI to PMAA significantly upgraded the inhibition efficiency up to 96.7%. The adsorption properties of PMAA and PMAA + KI are estimated by considering thermodynamic and kinetic parameters. The results reveal that PMAA alone was physically adsorbed onto the mild steel surface, while comprehensive adsorption mode characterized the adsorption of PMAA + KI. Adsorption of PMAA and PMAA + KI followed Temkin adsorption isotherm. The SEM and water contact angle images confirmed the enhanced PMAA film formation on mild steel surface by iodide ions.  相似文献   

20.
1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号