首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蒸汽爆破麦草同步糖化发酵转化乙醇的研究   总被引:4,自引:0,他引:4  
罗鹏  刘忠  杨传民  王高升 《化学工程》2007,35(12):42-45
近年来对木质生物资源同步糖化发酵转化乙醇的研究较多,但是,麦草同步糖化发酵转化乙醇的最佳工艺条件还未确定。文中采用正交试验设计的方法,对在混合酶(纤维素酶Celluclast 1.5 1,β-葡萄糖苷酶Novozym 188)与酿酒酵母菌作用下,稀硫酸催化的蒸汽爆破麦草原料同步糖化发酵转化乙醇的工艺条件进行研究,详细讨论了反应温度、底物质量浓度、发酵液pH值、纤维素酶浓度对乙醇质量浓度和得率的影响。结果表明,工艺条件对乙醇质量浓度和得率的影响程度由高到低依次为:底物质量浓度、纤维素酶浓度、发酵液pH值、反应温度。最佳工艺条件为反应温度35℃,底物质量浓度100 g/L,发酵液pH值5.0,纤维素酶浓度30 FPU/g。在此条件下,随着反应时间的延长,乙醇质量浓度持续上升。反应72 h后,乙醇质量浓度和得率分别达到22.7 g/L和65.8%。  相似文献   

2.
Simultaneous saccharification and fermentation (SSF) of alkaline hydrogen peroxide pretreated Antigonum leptopus (Linn) leaves to ethanol was optimized using cellulase from Trichoderma reesei QM‐9414 (Celluclast® from Novo) and Saccharomyces cerevisiae NRRL‐Y‐132 cells. Contrary to the saccharification optima (2.5% w/v substrate concentration, 50 °C, 4.5 pH, 40 FPU cellulase g−1 substrate and 24 h reaction time), the SSF optima was found to be somewhat different (10% w/v substrate, 40 °C, 100 FPU cellulase g−1 substrate and 72 h). Better ethanol yields were obtained with SSF compared with the traditional saccharification and subsequent fermentation (S&F) and when the cellulase was supplemented with β‐glucosidase. © 1999 Society of Chemical Industry  相似文献   

3.
The current ethanol production processes using crops such as corn and sugar cane are well established. However, the utilization of cheaper biomasses such as lignocellulose could make bioethanol more competitive with fossil fuels, without the ethical concerns associated with the use of potential food resources. A cassava stem, a lignocellulosic biomass, was pretreated using dilute acid to produce bioethanol. The pretreatment conditions were evaluated using response surface methodology (RSM). As a result, the optimal conditions were 177 °C, 10 min and 0.14 M for the temperature, reaction time and acid concentration, respectively. The enzymatic digestibility of the pretreated cassava stem was examined at various enzyme loadings (10–40 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase). With respect to economic feasibility, 20 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase were selected for the test concentration and led to a saccharification yield of 70%. The fermentation of the hydrolyzed cassava stem using Saccharomyces cerevisiae resulted in an ethanol concentration of 7.55 g/L and a theoretical fermentation yield of 89.6%. This study made a significant contribution to the production of bioethanol from a cassava stem. Although the maximum ethanol concentration was low, an economically efficient overall process was carried out to convert a lignocellulosic biomass to bioethanol.  相似文献   

4.
A high-efficiency, integrated bioethanol production process was developed in this study, using Miscanthus as lignocellulosic biomass. The continuous process involved a twin-screw extruder, a pretreated biomass washing/dewatering process, and a saccharification/fermentation process. In addition, the integration process was designed for the reuse of pretreatment solution and the production of highly concentrated bioethanol. Pretreatment was performed with 0.72 M NaOH solution at 95 °C using an 80 rpm twin-screw speed and a flow rate of 90mL/min (18 g/min of raw biomass feeding). Following washing and dewatering steps, the pretreated biomass was subjected to simultaneous saccharification and bioethanol fermentation processes. The maximum ethanol concentration, yield from biomass, and total volume obtained were 59.3 g/L, 89.9%, and 60 L, respectively, using a pretreated biomass loading of 23.1% (w/v) and an enzyme dosage of 30 FPU/g cellulose. The results presented here constitute an important contribution toward the production of bioethanol from Miscanthus.  相似文献   

5.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

6.
M.P. García-Aparicio 《Fuel》2011,90(4):1624-1630
Barley straw is nowadays being considered a potential lignocellulosic raw material for fuel-ethanol production as an alternative to starch- or sugar-containing feedstock. In this work, several configuration strategies for ethanol production from steam-exploded barley straw by Kluyveromyces marxianus CECT 10875 have been studied with the aim of obtaining higher ethanol concentrations.Different substrate loading (2-15%, w/v) were studied during enzymatic hydrolysis. The xylanase contribution on glucose production and glucan conversion at different substrate loading was also investigated. In addition, three different process configurations, separate hydrolysis and fermentation, simultaneous saccharification and fermentation and presaccharification and simultaneous saccharification, were compared at different water insoluble solids concentration (5%, 10% and 15%). The influence of xylanase addition on the ethanol yield was studied as well.Results show that endo-xylanases improved glucan conversion and ethanol yield compared with a standard enzymatic mixture, markedly at low substrate concentration. The positive effect of added xylanase was most evident at early stages of enzymatic hydrolysis. Regarding process configurations for the period of 72 h, SSF with endo-xylanases provided the best ethanol yield, nearly 70%, for 10% WIS. Nonetheless, the higher ethanol concentration, 29.4 g/l, was obtained at 15% WIS.  相似文献   

7.
Although simultaneous saccharification and fermentation (SSF) has been investigated extensively, the optimum condition for SSF of wheat straw has not yet been determined. Dilute sulfuric acid impregnated and steam explosion pretreated wheat straw was used as a substrate for the production of ethanol by SSF through orthogonal experiment design in this study. Cellulase mixture (Celluclast 1.5 l and ?-glucosidase Novozym 188) were adopted in combination with the yeast Saccharomyces cerevisiae AS2.1. The effects of reaction temperature, substrate concentration, initial fermentation liquid pH value and enzyme loading were evaluated and the SSF conditions were optimized. The ranking, from high to low, of influential extent of the SSF affecting factors to ethanol concentration and yield was substrate concentration, enzyme loading, initial fermentation liquid pH value and reaction temperature, respectively. The optimal SSF conditions were: reaction temperature, 35°C; substrate concentration, 100 g·L-1; initial fermentation liquid pH, 5.0; enzyme loading, 30 FPU·g-1. Under these conditions, the ethanol concentration increased with reaction time, and after 72 h, ethanol was obtained in 65.8% yield with a concentration of 22.7 g·L-1.  相似文献   

8.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

9.
Dilute acid fractionation of barley straw improves dissolving hemicellulose fraction of the straw, while leaving the cellulose more reactive and accessible to enzyme as a strategy of pretreatment. To characterize the fractionation process, the effects of the acid concentration, temperature and reaction time on the hemicellulose removal as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid) were investigated. The optimum fractionation conditions of barley straw were 1% (w/v) concentration of sulfuric acid, 158 °C of reaction temperature and 15 min of reaction time. Under the optimum conditions, 87% of xylan was hydrolyzed and recovered in liquid hydrolyzate, which was 7% higher than that of the predicted yield. The hydrolyzate contained glucose 2.44 g/L, arabinose 1.70 g/L, xylose 13.41 g/L, acetic acid 1.55 g/L, levulinic acid 0.03 g/L, 5-HMF 0.03 g/L and furfural 0.75 g/L.  相似文献   

10.
BACKGROUND: Bioethanol produced from renewable biomass, such as sugar, starch or lignocellulosic materials, is one of the alternative energy resources that is environmentally friendly. Triticale crops have a high yield as well as a high starch content and amylolytic enzyme activity and are therefore considered to be ideal for bioethanol production. RESULTS: This study examined the feasibility of ultrasound pretreatment to enhance the release of fermentable sugars from triticale meal during pretreatment and consequently increase bioethanol yield in the simultaneous saccharification and fermentation (SSF) process by Saccharomyces cerevisiae yeast. Ultrasonic pretreatment effectively increased the glucose and maltose content after liquefaction by 15.71% and 52.57%, respectively, compared with the untreated control sample under determined optimal conditions of sonication (5 min, 60 °C). The ultrasound pretreatment consequently improved bioethanol production during SSF processing since the bioethanol content was increased by 10.89%. CONCLUSION: Taking into consideration significant process parameters obtained in the SSF process of triticale meal with ultrasound pretreatment at 60 °C, the process time may be reduced from 72 to 48 h. At that point of the SSF, maximum bioethanol content of 9.55% (w/v), bioethanol yield of 0.43 g g?1 of triticale starch, and percentage of the theoretical bioethanol yield of 84.56% were achieved. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Saccharina japonica was fractionated by dilute sulfuric acid to increase the glucan content. The optimal fractionation conditions were determined as follows: reaction temperature 141.14 °C, reaction time 27.85 min and catalyst concentration 0.30%. The CCD model predicted 32.83% glucan content under these conditions. Experiments confirmed the maximum glucan content of 32.67% under the optimal reaction conditions, which was 4.7-fold higher than that of the raw S. japonica (6.95%). With the residual solid, an enzymatic digestibility of 89.38% was obtained using 15 FPU/g-glucan of cellulase enzyme loading, which was 2.6-fold higher than that of the raw S. japonica (34.85%).  相似文献   

12.
BACKGROUND: Current ethanol production processes using crops such as corn and sugar cane are well established. However, the utilization of cheaper biomasses such as lignocellulose could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. RESULTS: Oil palm empty fruit bunches (OPEFB), a lignocellulosic biomass, was pretreated using NaOH to produce bioethanol. The pretreatment and enzymatic hydrolysis conditions were evaluated by response surface methodology (RSM). The optimal conditions were found to be 127.64 °C, 22.08 min, and 2.89 mol L?1 for temperature, reaction time, and NaOH concentration, respectively. Regarding enzymatic digestibility, 50 FPU g?1 cellulose of cellulase was selected as the test concentration, resulting in a total glucose conversion rate (TGCR) of 86.37% using the Changhae Ethanol Multi Explosion (CHEMEX) facility. Fermentation of pretreated OPEFB using Saccharomyces cerevisiae resulted in an ethanol concentration of 48.54 g L?1 at 20% (w/v) pretreated biomass loading, along with simultaneous saccharification and fermentation (SSF) processes. Overall, 410.48 g of ethanol were produced from 3 kg of raw OPEFB in a single run, using the CHEMEX_50 L reactor. CONCLUSION: The results presented here constitute a significant contribution to the production of bioethanol from OPEFB. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Hydrothermal fractionation for micro-algae, Schizocytrium sp., was investigated to separate sugars, lipids, and proteins. This fractionation process produced protein-rich solid cake and liquid hydrolysates, which contained oligomeric sugars and lipids. Oligomeric sugars and lipids were easily separated by liquid-liquid separation. Sugars in the separated hydrolyzate were determined to be mainly D-glucose and L-galactose. Fractionation conditions were optimized by response surface methodology (RSM). Optimal conditions were found to be 115.5 °C of reaction temperature, 46.7 min of reaction time, and 25% (w/w) of solid loading. The model predicted that maximum oligomeric sugar yield (based on untreated micro-algae weight), which can be recovered by hydrothermal fractionation at the optimum conditions, was 19.4 wt% (based on the total biomass weight). Experimental results were in agreement with the model prediction of 16.6 wt%. Production of bioethanol using micro-algae-induced glucan and E. coli KO11 was tested with SSF (simultaneous saccharification and fermentation), which resulted in 11.8 g-ethanol/l was produced from 25.7 g/l of glucose; i.e. the theoretical maximum ethanol yield based on glucan in hydrolyzate was 89.8%.  相似文献   

14.
Although simultaneous saccharification and fermentation (SSF) has been investigated extensively, the optimum condition for SSF of wheat straw has not yet been determined. Dilute sulfuric acid impregnated and steam explosion pretreated wheat straw was used as a substrate for the production of ethanol by SSF through orthogonal experiment design in this study. Cellulase mixture (Celluclast 1.5 l and β-glucosidase Novozym 188) were adopted in combination with the yeast Saccharomyces cerevisiae AS2.1. The effects of reaction temperature, substrate concentration, initial fermentation liquid pH value and enzyme loading were evaluated and the SSF conditions were optimized. The ranking, from high to low, of influential extent of the SSF affecting factors to ethanol concentration and yield was substrate concentration, enzyme loading, initial fermentation liquid pH value and reaction temperature, respectively. The optimal SSF conditions were: reaction temperature, 35°C; substrate concentration, 100 g·L−1; initial fermentation liquid pH, 5.0; enzyme loading, 30 FPU·g−1. Under these conditions, the ethanol concentration increased with reaction time, and after 72 h, ethanol was obtained in 65.8% yield with a concentration of 22.7 g·L−1. __________ Translated from Chemical Engineering (China), 2007, 35(12): 42–45 [译自: 化学工程]  相似文献   

15.
BACKGROUND: In Mediterranean countries, olive tree pruning provides a widely available renewable agricultural residue with, currently, no industrial application. This residue could provide feedstock for the bioethanol industry. In the present study, olive tree pruning biomass pretreated with both ‘liquid hot water’ and ‘dilute‐sulfuric acid’ was tested as a substrate for ethanol production. Three different process configurations, separate hydrolysis and fermentation (SHF), simultaneous saccharification, fermentation and prehydrolysis (PSSF), and simultaneous saccharification and fermentation (SSF), were compared at different water‐insoluble solids concentrations. RESULTS: High ethanol concentration of about 3.7% (v/v) was obtained by separate hydrolysis and fermentation or prehydrolysis and simultaneous saccharification and fermentation of liquid hot water pretreated at 23% (w/w) substrate loading. CONCLUSION: The nature of the pretreated residue allows high substrate concentration (≥17% w/w) to be used in the enzymatic hydrolysis step. Substrate loading of 17% DM has been shown to provide a compromise between hydrolysis efficiency and glucose concentrations for the same enzyme/substrate ratio. Prehydrolysis prior to simultaneous saccharification and fermentation facilitated SSF performance at high substrate loading on liquid hot water pretreated olive pruning residue. This effect was not observed with dilute‐acid pretreated substrate. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Wood chips from Pinus radiata and Acacia dealbata were pretreated with the white‐rot fungi Ceriporiopsis subvermispora and Ganoderma australe, respectively, for 30 days at 27 °C and 55% relative humidity, followed by an organosolv delignification with 60% ethanol solution at 200 °C for 1 h to produce pulps with high cellulose and low lignin content. Biotreatment for 30 days was chosen based on low weight and cellulose losses (lower than 4%) and lignin degradation higher than 9%. After organosolv delignification, pulp yield for P. radiata and A. dealbata pulps was 45–49% and 31–51%, respectively. P. radiata bio‐pulps showed higher glucan (93%) and lower lignin content (6%) than control pulps (82% glucan and 13% lignin). A. dealbata bio‐pulps also showed higher glucan (95%) and lower lignin content (2%) than control pulps (92% glucan and 4% lignin). Pulp suspensions at 2% consistency were submitted either to separate enzymatic hydrolysis and fermentation (SHF) or simultaneous enzymatic saccharification and fermentation (SSF) for bioethanol production. The yeast Saccharomyces cerevisiae was used for fermentation. Glucan‐to‐glucose conversion in the enzymatic hydrolysis of control and bio‐pulps of P. radiata was 55% and 100%, respectively, and it was 100% for all pulp samples case of A. dealbata. The highest ethanol yield (calculated as percentage of theoretical yield) during SHF of P. radiata control and bio‐pulps was 38% and 55%, respectively, and for A. dealbata control and bio‐pulps 62% and 69%, respectively. The SSF of P. radiata control and bio‐pulps yielded 10% and 65% of ethanol, respectively, and 77% and 82% for A. dealbata control and bio‐pulps, respectively. In wood basis, the maximum conversion obtained (g ethanol per kg wood) in SHF was 37% and 51% (for P. radiata and A. dealbata pulps, respectively) and 44% and 65% in SSF (for P. radiata and A. dealbata pulps, respectively) regarding the theoretical yield. The low wood‐to‐ethanol conversion was associated with low pulp yield (A. dealbata pulps), high residual lignin amount (P. radiata pulps) and the low pulp consistency (2%) used for SHF and SSF. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
In this work, the ethanol production from sweet sorghum residue was studied. Sweet sorghum residue was hydrolyzed with phosphoric acid under mild conditions. The liquid hydrolysate was fermented by Pachysolen tannophilus, and the hydrolysis residue was fermented by the simultaneous saccharification and fermentation (SSF) using Saccharomyces cerevisiae with cellulase (60 FPU/g dry materials). Orthogonal experiments were carried out to investigate the effects of main reaction condition factors, such as temperature, acid concentration, time and dry-matter content, on the reducing sugar yield. The results show that the optimal reaction conditions should be 120°C, 80 g/L, 80 min and 10%, respectively. Under these conditions, 0.3024 g reducing sugar/g dry material was obtained. The liquid hydrolysate was then fermented by P.tannophilus with the highest ethanol concentration of 14.5 g/L. At a water-insoluble solid concentration of 5%, 5.4 g/L ethanol was obtained after 12 h of SSF. The total ethanol yield was 0.147 g/g dry material, which would be beneficial for the application of ethanol production from sweet sorghum residue. __________ Translated from Journal of Beijing University of Chemical Technology, 2007, 34(6): 637-639, 652 [译自: 北京化工大学学报]  相似文献   

18.
表面活性剂对麦草同步糖化发酵转化乙醇的影响   总被引:2,自引:0,他引:2  
罗鹏  刘忠 《过程工程学报》2009,9(2):355-359
研究了5种非离子型表面活性剂(BSA, Tween-20, Tween-80, PEG-4000, PEG-6000)促进麦草同步糖化发酵的效果. 结果表明,5种表面活性剂均能促进麦草同步糖化发酵,以Tween-20效果最为显著. 反应体系中添加Tween-20可降低酶用量而保持乙醇浓度基本相同. 在pH 5.0、温度37℃、底物浓度50 g/L及Celluclast 1.5 l用量25 FPU/g、Novozym 188用量15 IU/g的反应体系中,添加0.03 g/g Tween-20,反应72 h,乙醇浓度达到18.7 g/L,比未添加表面活性剂的体系提高了14.0%,反应时间缩短了12 h.  相似文献   

19.
研究了醋酸预处理对稻草主要化学成分及酶水解糖化效率的影响。在160℃下以不同的醋酸用量(0~4%)对稻草进行处理,预处理后稻草的Klason木质素含量基本保持不变,约60%的酸溶木质素被脱除;灰分含量(质量分数)约下降30%,灰分中SiO2则几乎全部保留在预处理浆料中。预处理醋酸用量的增加对酸溶木质素和灰分含量的变化均无显著影响。预处理后高聚糖的降解程度随醋酸用量的增加而上升,其中半纤维素的降解程度尤为显著,阿拉伯聚糖、半乳聚糖大量溶出。对经醋酸预处理稻草的酶水解研究表明,预处理中醋酸用量的增加无助于酶水解液中还原糖得率的提高。稻草于160℃下经不添加醋酸的自水解预处理后,其酶解还原糖得率均高于经醋酸预处理的稻草,当纤维素酶用量为40 FPU/g(对底物)时,稻草中高聚糖的酶水解转化效率最高,葡聚糖、木聚糖的转化率分别为67.8%和45.3%,总糖转化率为58.8%。  相似文献   

20.
Solid content in the simultaneous saccharification and fermentation (SSF) broth should be as high as possible in order to reach higher ethanol concentration. In this work, several feeding strategies for ethanol production from steam-exploded wheat straw by Kluyveromyces marxianus CECT 10875 have been studied with the aim of obtaining higher ethanol concentrations. Previous fermentability tests as well as SSF processes showed the difficulty of using the slurry for ethanol production under the studied conditions. Notwithstanding, fed-batch SSF processes with water-insoluble solids (WIS) fraction resulted in better configuration, reaching the highest ethanol concentration (36.2 g/L) with an initial WIS content of 10% (w/v) and 4% (w/v) of substrate addition at 12 h, which meant 20% more ethanol when compared with batch SSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号