首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
薄膜太阳能电池的研究进展   总被引:2,自引:1,他引:1  
薄膜太阳能电池是缓解能源危机的新型光伏器件。评述了薄膜太阳能电池的优缺点,主要介绍了薄膜硅太阳能电池、多元化合物薄膜太阳能电池和有机薄膜太阳能电池的研究现状,总结了它们各自在价格成本、光电转换效率及对环境影响等方面的特点,并对其发展趋势进行了展望。  相似文献   

2.
太阳能光伏技术是把太阳的光能转换成电能的主要方式。目前主要的太阳能光伏转换器件有硅太阳能电池,砷化镓太阳电池,燃料敏华太阳电池和薄膜太阳电池等。其中,硅太阳电池是主要技术。对光伏电池输出特性进行深入广泛的研究具有重要意义。在分析太阳能光伏发电的基本原理基础上,研究了太阳能电池的I-V特性、照度特性,然后对光伏实验系统进行了相关的测试。  相似文献   

3.
科技动态     
日本加快开发既不造成环境污染、又不消耗矿物燃料的高效太阳能电池。据报道,日本工业技术院将要研究的下一代高效太阳能电池,主要是以薄型单晶硅太阳能电池和叠层型太阳能电池两种。薄型单晶硅太阳能电池是将以往200—300μm厚的硅膜减小到只有50μm厚,以便产生的电子难以在硅膜中被吸收,从而达到光电转换的高效率。此外,还在硅膜表面上刻出痕状的结构,在底层装上反射膜,使光难以穿透发电层。日本研究人员认为,这样光电转换效率有可能提高到35%,而  相似文献   

4.
据《学会志》1995年第2期报道,日本能源公司采用InGaP和GaAs化合物叠层结构,获得光电转换效率为273%,是日本国内最高水平的太阳能电池。该电池在GaAs基极上,优化外延生长InP以高效率的电光能转换。目前,美国的NEL所用的材料和日本能源公司相同,转换效率为29.5%。太阳能电池的转换效率达27.3%@陈兆静  相似文献   

5.
光吸收效率是提高薄膜太阳能电池的光电转换效率的关键,通过增加入射光在太阳能电池中的光程的方法提升电池的吸收效率。采用有限元法对薄膜太阳能电池进行参数和结构优化。首先设计了一维具有分布式布拉格反射器性能,波长范围在400~800nm的的光子晶体DBR结构作为电池的背反射,与单纯的PIN结构的太阳能电池相比,使光吸收效率和光谱响应分别提升了38%和45%,并在此基础上,在DBR表面刻蚀光栅作为薄膜硅太阳能电池的背底反射器。仿真结果表明:通过利用DBR的高反射性和光栅的衍射作用,在400~1 000nm光谱范围内,进一步提高了太阳能电池的光吸收效率和光谱响应,通过与单纯PIN太阳能电池相比较,光吸收率和光谱响应分别提升了61.6%,和85.4%。  相似文献   

6.
激光加工技术使太阳能电池的效率提高到22%   总被引:1,自引:0,他引:1  
目前,由晶体硅制作的太阳能电池已在太阳能光生伏打产品市场上占据统治地位.一般工业晶体硅太阳能电池的光-电转换效率为14%~16%,而采用新的激光加工技术能提高太阳能电池的光-电转换效率.德国Institut für Solarenergieforschung Hameln(ISFH)研究所的研究人员已经研制出一种制造太阳能电池的加工工艺,即背交叉单次蒸发(RISE)工艺.辅以激光加工技术,用该工艺制造的背接触式硅太阳能电池的光电转换效率达到22%.  相似文献   

7.
《印制电路信息》2009,(9):72-72
硅太阳能电池制造中湿法化学处理的综述 An Overview of Wet Chemistry Processing for the Manufacture of Silicon Solar Cells 文章叙述了太阳能电池和光伏(PV)的市场,目前以硅PV比例占绝大多数,其光电转换效率比有机膜电池高。硅太阳能电池制造中湿法化学处理有硅晶圆清洗、基材的表面蚀刻和清洗处理、金属化和电镀过程等,这些处理效果会影响到电池的光电转换效率。  相似文献   

8.
第九届国际光电学及工程技术研讨会于1996年11月11日至15日在日本宫崎县召开,太阳能发电低成本制造技术成为会上热点话题,其中引人关注的是材料成本低的薄膜太阳能电池,美国USSC和日本三洋电机公司采用非晶体Si膜制成的太阳能电池,光劣化后转换效率竟高达10%左右。 将太阳能电池置于屋顶供给家庭电力,显示出住户使用太阳能发电系统市场不断扩大的光明前景。 日本能源厅为了鼓励认购太阳能电池实行补助措  相似文献   

9.
文摘选登     
美国科频公司最近研制成功单结薄膜砷化镓太阳能电池。这种电池在无磁场的地面上,中午的光电转换率达22.4%。这种太阳能电池是将砷化镓薄膜覆盖在铝基片上。  相似文献   

10.
三结砷化镓叠层电池(InGaP/GaAs/Ge)耐强光、光电转换效率高且温度特性好,是激光无线电能传输系统中光电转换组件的理想材料.基于三结砷化镓叠层电池的光谱响应曲线,以532、808和980 nm三种波长激光组合入射,在保证入射总功率密度为2 W/cm2的条件下,研究了三种波长入射激光的不同功率配比对其光电转换效率的影响.结果表明,在532、808和980 nm三种波长入射激光功率配比为7:8:5时,光电转换效率最高,为33.549%.该研究对提高三结砷化镓电池的转换效率有一定的应用价值.  相似文献   

11.
<正>薄膜太阳能电池生产线的增加是2008年太阳能电池产业的一个显著特点。薄膜太阳能电池虽然早已出现,但由于光电转换效率低、衰减率较高等问题,前些年未引起业界的足够关注,市场占有率很低。随着其技术的不断进步,光电转换效率得到迅速提高,现在比2年以前约提升了30%~40%,虽然  相似文献   

12.
<正>据有关媒体报道,德国弗劳恩霍夫太阳能系统研究所(ISE)的科研人员研发出了转换效率高达41.1%,几乎是传统硅太阳能电池两倍的太阳能电池。这种电池采用了太阳能电池堆叠技术,使整个太阳光谱都可用于能源生产。  相似文献   

13.
针对薄膜太阳能电池硅薄膜层吸收效率较低的问题,提出了运用金属纳米粒子局域表面等离子体共振(LSPR)增强太阳能电池的吸收效率,采用时域有限差分(FDTD)法,模拟计算了太阳能电池中不同厚度的硅薄膜层吸收特性,分析了不同几何参数的矩形Ag纳米粒子与Ag背反射膜对增强太阳能电池吸收效率的影响作用。计算结果表明,硅薄膜层厚度为500nm的太阳能电池具有较高的吸收效率,通过调整Ag纳米粒子的相关参数,有效地降低了太阳电池硅薄膜表面的反射损耗,取得最大吸收增强因子为1.35。Ag背反射膜有效地降低了Ag纳米粒子硅薄膜结构的透射损耗,其最大的吸收增强因子达到1.42。  相似文献   

14.
《电力电子》2005,3(4):7-7
韩国科学家7月20日称,他们开发出了全球效率最高的柔性太阳能电池的原型产品。据韩国电子和电信研究所太阳能电池研究小组的负责人Ryu Gwangseon,介绍说,这种柔性太阳能电池的造价相当低,但是,这种太阳能电池将太阳能转换为电能的性能是目前传统的基于硅的太阳能电池的一倍。据介绍,这种太阳能电池的厚度只有0.4mm。  相似文献   

15.
<正>太阳能取之不竭,用之不尽,清洁、高效、无污染。对太阳能的光电利用是近些年来发展最快、最具活力的研究领域,其中太阳能电池制备是研究的重中之重,备受关注。薄膜太阳能电池被认为是最具前途的太阳能电池技术。据统计,它的硅用量仅为硅片太阳能电池的1%左右,使得每瓦太阳能电池成本从2.5美元降至1.2美元。钙钛矿作为一种人工合成材料,在2009年被首次尝试应用于光伏发电领域后,因为性能优异、成本低廉、商业价值巨大,从此大放异彩。钙钛矿属于第三代太阳能电池,也称作新概念太阳能电池。  相似文献   

16.
正近日,中国科学院物理研究所下属的"新能源材料与器件北京市重点实验室",对"钙钛矿型薄膜太阳能电池"的研究取得了阶段性突破:薄膜太阳能电池光电转换效率高达10.47%。研究成果已在应用物理领域国际顶级期刊《应用物理快报》发表。目前,太阳能电池市场85%的市场份额由晶体硅太阳能电池占据,晶体硅价格高昂,光伏产业的应用发  相似文献   

17.
《通信电源技术》2005,22(4):48-48
韩国科学家近日称,他们开发出了全球效率最高的柔性太阳能电池的原型产品。据韩国电子和电信研究所太阳能电池研究人员介绍说,这种柔性太阳能电池的造价相当低,但是,这种太阳能电池将太阳能转换为电能的性能是目前传统的基于硅的太阳能电池的一倍,而厚度只有0.4mm。  相似文献   

18.
太阳能汽车     
日本霍克桑公司最近研制出一种太阳能汽车。这种新型太阳能汽车完全靠车上安装的高性能太阳能电池驱动,所用单晶硅太阳能电池的光电转换效率为19.3%,输出功率约1.4kW,而且还采用了小  相似文献   

19.
IBM使用常见材料制成的太阳能电池,转换效率已打破世界纪录。太阳能产业面临的一项挑战就是需要大量精力来处理太阳能电池标准以及在薄膜太阳能电池生产中对稀土金属的依赖问题。正如所提到的,用于生产薄膜太阳能的材料匮乏并且昂贵,而一些元素如用于生产碲化镉电池中的镉也会给健康和环境带来潜在的问题。  相似文献   

20.
对纳米压印技术原理、分类和不同领域的应用进行了简单阐述。总结了纳米压印技术在不同类型的太阳能电池,如晶硅太阳能电池、薄膜太阳能电池、聚合物太阳能电池及其他新型太阳能电池中的应用,并重点阐述了纳米压印技术在制备太阳能电池减反膜、图案化衬底、图案化活性层和图案化电极等有效减少太阳能电池表面太阳光反射和大大提高太阳能电池光电转换效率方面的研究进展。最后,针对纳米压印技术在产业化中所面临的困难进行了分析和总结,并提出了纳米压印技术在太阳能电池领域未来的研究重点和发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号