首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
为了解微动疲劳失效机理,通过柱面对柱面的接触方式,研究了60Si2Mn钢在椭圆形路径、拉扭耦合作用下的多轴低周微动疲劳特性,深入分析讨论了不同轴向循环拉伸应力幅值对摩擦磨损表面和断口形貌的影响.结果认为:磨损区产生的氧化物磨屑对微动区磨擦损伤行为具有显著影响;微动摩擦磨损对试样表面的影响深度只有数十微米;微动疲劳裂纹源...  相似文献   

2.
采用光滑圆柱疲劳试样,通过对500MPa级针状铁素体钢进行轴向总应变控制模式的室温低周疲劳实验,研究了实验钢的循环应力-应变行为、应变-寿命特性及循环应力响应。结果表明:当总应变幅为临界应变幅时(Δεt/2=0.35%),循环一开始就进入饱和状态,应力幅值保持不变;当总应变幅低于临界应变幅时(0.2%≤Δεt/2<0.35%),实验钢表现出循环软化特性;当总应变幅高于临界应变幅时(0.35%<Δεt/2≤0.6%),实验钢先表现出循环硬化,达到循环饱和后又表现出循环软化特性。疲劳断口的SEM分析表明,疲劳裂纹通常萌生于试样一侧的表面,具有多源性,且裂纹的扩展符合Laird的塑性钝化机制。  相似文献   

3.
研究了35CrMoA合金钢在接触应力为150 MPa,等效应力幅值为400 MPa时方形和菱形路径下的微动疲劳特性,包括循环应力响应特征、疲劳寿命、微动斑及微动疲劳断口的形貌特征。结果表明,方形路径下,35CrMoA钢经缓慢循环软化、快速软化到达最后的稳定阶段,而菱形加载下,材料快速软化之后直接到达稳定阶段;两种路径下的疲劳寿命差别不大;方形加载的滑移区较宽,粘着区较窄,而菱形加载则相反;方形路径下裂纹垂直于试样表面扩展,而菱形加载路径下的微裂纹是曲折的,沿与轴线成一定角度的方向上扩展。  相似文献   

4.
本实验研究了TB6高强钛合金在拉-扭多轴应力条件下的微动疲劳断裂机理,并结合宏微观观察、残余应力测试、计算机模拟分析了不同工艺条件的耳片在拉-扭疲劳试验应力下的微动疲劳寿命差异,研究了微动疲劳裂纹的萌生及扩展特性,揭示了耳片裂纹萌生机制。结果表明:二次挤压耳片的断口扩展区面积比例较大,说明其拉-扭疲劳扩展更为充分。经二次挤压后,耳片的拉-扭微动疲劳总寿命得到延长,且裂纹萌生寿命均占总寿命的95%以上;二次挤压后耳片的裂纹萌生驱动力较低,呈现较高的裂纹萌生抗力。各断口均起源于耳片内孔微动磨损印迹较重处,大面积连续片状的微动磨损印迹表明二次挤压后的钛合金微动疲劳敏感性大大降低。经挤压强化后,孔壁形成了较高幅值的残余压应力层和组织强化层,可以有效地抑制裂纹的萌生和扩展。耳片内孔微动磨损层的形成是机械诱导机制和热诱导机制共同作用的结果,其最终磨损形式为疲劳磨损。  相似文献   

5.
针对循环软化材料调质42CrMo钢进行了常规弯曲疲劳实验和弯曲微动疲劳实验,分析了常规弯曲疲劳和弯曲微动疲劳之间的差异,并讨论了循环弯曲载荷对疲劳寿命的影响。通过分析不同弯曲载荷下弯曲微动疲劳试样断口的形貌和不同循环次数下微动损伤的情况,揭示调质42CrMo钢弯曲微动疲劳过程中的损伤特性。研究结果表明:同一循环载荷作用下,弯曲微动疲劳的寿命明显低于常规弯曲疲劳的寿命;随着循环弯曲载荷的增大,弯曲微动疲劳的寿命降低更明显;微动引起的局部接触疲劳和局部塑形变形促进了弯曲微动疲劳裂纹的萌生和进一步扩展。  相似文献   

6.
S135钻杆钢的拉扭复合加载疲劳行为   总被引:1,自引:0,他引:1  
采用疲劳实验和回归分析相结合的方法,研究了S135钻杆钢在拉扭复合加载条件下的疲劳行为,并对疲劳断口进行了微观分析。结果表明:当τa/σeq=0.7时,由拉扭应力幅对应的当量应力表示的疲劳寿命公式可很好地描述S135钻杆钢的拉扭疲劳寿命规律;疲劳断口由疲劳源区、疲劳裂纹稳定扩展区和快速瞬断区组成,疲劳裂纹从试样表面萌生,并向试样内部扩展,且常为多疲劳源,不同疲劳源断口的连接和复合加载形成所谓的"屋脊"状特征;拉扭疲劳断裂试样裂纹源区的微观断口特征为明显的河流花样,裂纹扩展区的微观断口特征为疲劳条带与涟波状花样。  相似文献   

7.
菱形加载路径下35CrMoA钢的微动疲劳行为EI北大核心CSCD   总被引:1,自引:0,他引:1  
采用MTS809拉扭复合疲劳试验机、扫描电镜(SEM)研究了接触应力为150MPa时35CrMoA合金钢在菱形加载路径下微动疲劳性能。结果表明:随着等效应力幅值的增加,材料的软化、硬化效果更加明显;剪应力-剪应变滞后回线的面积增大;裂纹萌生源区的面积减小,瞬断区面积与总断面面积的比例增加,瞬断区的撕裂也越严重。微动磨损使表面塑性枯竭,从而形成疲劳裂纹源。  相似文献   

8.
研究LZ50车轴钢不同过盈配合接触应力水平对旋转弯曲微动疲劳寿命的影响。分别利用光学显微镜、扫描电子显微镜对过盈配合表面的微动损伤表面和断口进行分析。结果表明,随着过盈量的增加,LZ50车轴钢旋转弯曲微动疲劳寿命呈现先降低而后升高的非线性特征,这是多轴复杂应力、配合面的接触应力、微动摩擦应力以及微动磨损交互作用的结果。  相似文献   

9.
采用MTS809拉扭复合疲劳试验机、扫描电镜(SEM)研究了热等静压(Hot isostatic pressing,HIP)处理前后,圆形加载路径下,A319铝合金多轴疲劳特性。结果表明,HIP处理后,材料中的孔洞缺陷数量减少,疲劳失效过程中产生的微裂纹的数量减少且尺寸减小。相同等效应变幅值下产生的轴向应力幅值、切向应力幅值、等效应力幅值均显著增加。材料轴向上表现为先产生循环硬化而后循环软化,切向则表现为先产生循环硬化后趋于循环稳定,HIP处理前后循环软化硬化趋势大致相同。轴向应力应变滞后回线、切向扭矩扭角滞后回线面积有所降低,附加强化效果增强。  相似文献   

10.
针对航空铝合金多轴疲劳失效问题,对7075-T651铝合金薄壁管件进行不同加载条件下的拉扭复合疲劳实验。结果表明:随等效应力幅的降低,多轴疲劳寿命增加;等效应力恒定时,寿命随应力幅比的升高而增加;拉扭相位差对寿命影响较小。高应力幅下材料在轴向和扭向以软化为主,低应力幅下硬化和软化交替出现。宏观断口平台区随应力幅比的增加而逐渐减小,微观断口呈现管壁外侧的多裂纹源特征,扩展区可以观察到疲劳条带和二次裂纹,瞬断区出现混合型韧窝。提出基于Basquin准则的改进模型,得到较好的寿命预测效果,寿命预测值均位于两倍分散带内。  相似文献   

11.
The effect of strain amplitude on fretting–fatigue behavior of steel wires in low cycle fatigue was investigated using a fretting–fatigue test rig which was capable of applying a constant normal contact load. The fretting regime was identified based on the shape of the hysteresis loop of tangential force versus displacement amplitude. The variations of the normalized tangential force with increasing cycle numbers and fretting–fatigue lives at different strain amplitudes were explored. The morphologies of fretting contact scars after fretting–fatigue tests were observed by scanning electron microscopy and optical microscopy to examine the failure mechanisms of steel wires. The acoustic emission technique was used to characterize the fretting–fatigue damage in the fretting–fatigue test. The results show that the fretting regimes are all located in mixed fretting regimes at different strain amplitudes. The increase in strain amplitude increases the normalized tangential force and decreases the fretting fatigue life. The abrasive wear, adhesive wear and fatigue wear are main wear mechanisms for all fretting–fatigue tests at different strain amplitudes. The accumulative total acoustic emission events during fretting–fatigue until fracture of the tensile steel wire decrease with increasing strain amplitude. An increase of the strain amplitude results in the accelerated crack nucleation and propagation and thereby the decreased life.  相似文献   

12.
The fretting fatigue behaviour of several alloy steels is reported in this paper. Fretting fatigue experiments were conducted on flat fretting junctions in axial tension at a stress ratio of 0.1. In all cases the same materials were fretted against each other. The fretting fatigue strength at a slip amplitude of 45 μ is rather insensitive to the hardness of the materials. The fretting fatigue strength at the slip amplitude of 10 μ increases with increase in hardness. As the slip amplitude increases the fretting fatigue life of 3SCrMo steel decreases, the depth of wear scars increases and the wear damage becomes more severe. The reason for similarity of fretting fatigue to the fatigue of notched specimens is that the effect of wear scars is similar to that of notches.  相似文献   

13.
In this study, an investigation was conducted on the fatigue performance of Al 7075-T6 plates in the presence of stress raisers (notch, fretting, and a combination of notch and fretting). Fretting situation was induced on the surface of the aluminium plate through steel contacting pads under two different clamping forces of 2 kN and 5.6 kN. The fatigue tests revealed a more dominant effect from stress concentrators originating from geometrical discontinuities such as the tested notch compared to the fretting wear conditions. Therefore, no noticeable differences were found between the fatigue lives of the notched specimens and the combined notch and fretting condition. A finite element stress analyses of the notched model under the contacting fretting pads agreed with the experimental results. The stress distribution at the clamped area introduced tensile stresses at the edge of the contact region, however, the stress at the notch tip was observed to be higher when an axial tensile load was applied to the end of the plate. Fractographic analyses confirmed the presence of cracks initiating from the fretting damaged surface for most of the combined notch and fretting fatigue test specimens particularly at the high cycle fatigue (HCF) zone.  相似文献   

14.
The fretting fatigue behaviours in 35CrMoA steel were investigated under conditions of the various contact pressure and the same maximum equivalent stress of cyclic multi‐axial loading. The specimens were characterized by optical microscopy and scanning electron microscopy. Results showed that the fretting fatigue life has complex variation with the increase of contact pressure. The different contact pressure also played very important role in fretting wear model and various wear scars were formed. The influence of them at the fretting surface on the fretting fatigue life was finally discussed by the comparison of the experimental and numerical analysis results.  相似文献   

15.
Fretting fatigue behaviour of shot‐peened titanium alloy, Ti‐6Al‐4V was investigated at room and elevated temperatures. Constant amplitude fretting fatigue tests were conducted over a wide range of maximum stresses, σmax= 333 to 666 MPa with a stress ratio of R= 0.1 . Two infrared heaters, placed at the front and back of specimen, were used to heat and maintain temperature of the gage section of specimen at 260 °C. Residual stress measurements by X‐ray diffraction method before and after fretting test showed that residual compressive stress was relaxed during fretting fatigue. Elevated temperature induced more residual stress relaxation, which, in turn, decreased fretting fatigue life significantly at 260 °C. Finite element analysis (FEA) showed that the longitudinal tensile stress, σxx varied with the depth inside the specimen from contact surface during fretting fatigue and the largest σxx could exist away from the contact surface in a certain situation. A critical plane based fatigue crack initiation model, modified shear stress range parameter (MSSR), was computed from FEA results to characterize fretting fatigue crack initiation behaviour. It showed that stress relaxation during test affected fretting fatigue life and location of crack initiation significantly. MSSR parameter also predicted crack initiation location, which matched with experimental observations and the number of cycles for crack initiation, which showed the appropriate trend with the experimental observations at both temperatures.  相似文献   

16.
对18CrNiMo7-6合金钢进行弯曲微动疲劳实验,建立弯曲微动疲劳S-N曲线,并对实验结果进行分析。结果表明:该合金钢的弯曲微动疲劳S-N曲线不同于中碳钢材料,也不同于常规弯曲疲劳,而是呈"ε"型曲线特征。随着弯曲疲劳应力的增加,微动运行区域由部分滑移区向混合区和滑移区转变,损伤区的磨损机制以剥层、磨粒磨损和氧化磨损为主。在混合区内,裂纹最易萌生和扩展,且裂纹均萌生于材料接触区次表面。受接触应力和弯曲疲劳应力影响,弯曲微动疲劳裂纹的萌生和扩展可分为三个阶段:初期,在接触应力控制下,裂纹萌生于次表面;随后,裂纹受接触应力和弯曲疲劳应力共同控制,转向更大角度方向扩展;最后,裂纹完全受弯曲疲劳应力控制而垂直于接触表面扩展,直至断裂失效。  相似文献   

17.
Investigations on fretting fatigue in aircraft engine compressor blade   总被引:1,自引:0,他引:1  
An investigation of several cracked blade tangs in the military aircraft engine compressor was conducted to identify the root cause of the failure. These cracks were found during the scheduled maintenance with fluorescent penetration inspection. The engine compressor blade made of Ti–6Al–4V is attached to compressor rotor by means of inserting retaining pin through rotor and blade tang. By analyzing the fracture surface of the failed blade tang, it is found that the crack in the blade tang was initiated by fretting fatigue and propagated under low cycle fatigue. Stress analysis of the blade using a non-linear finite element method is coincident with the results of fractography. The clearance between retaining pin and tang hole caused small amplitude of sliding motion leading to fretting wear during engine operation. Consequently, the damaged area due to fretting wear acts as a stress raiser inside tang hole and contributes to accelerate fretting fatigue.  相似文献   

18.
A study examining the fatigue failure mechanism of self‐piercing riveted (SPR) joints between aluminum alloy 6111‐T4 and 5754‐O is presented in this paper. In particular, the high‐cycle fatigue behavior of the SPR joints in the lap‐shear configuration is characterized. Experimental fatigue testing revealed that failure of SPR joints occurred because of cracks propagating through the sheet thickness at locations away from the rivet. In‐depth postmortem analysis showed that significant fretting wear occurred at the location of the fatigue crack initiation. Energy dispersive X‐ray of the fretting debris revealed the presence of aluminum oxide that is consistent with fretting initiated fatigue damage. High‐fidelity finite element analysis of the SPR process revealed high surface contact pressure at the location of fretting‐initiated fatigue determined by postmortem analysis of failed coupons. Furthermore, fatigue modeling predictions of the number of cycles to failure based on linear elastic fracture mechanics supports the conclusion that fretting‐initiated fatigue occurred at regions of high surface contact pressure and not at locations of nominal high‐stress concentration at the rivet.  相似文献   

19.
Effect of mean stress on fretting fatigue of Ti-6Al-4V on Ti-6Al-4V   总被引:1,自引:0,他引:1  
Fretting fatigue tests of Ti‐6Al‐4V on Ti‐6Al‐4V have been conducted to determine the influence of stress amplitude and mean stress on life. The stress ratio was varied from R=−1 to 0.8. Both flat and cylindrical contacts were studied using a bridge‐type fretting fatigue test apparatus operating either in the partial slip or mixed fretting regimes. The fretting fatigue lives were correlated to a Walker equivalent stress relation. The influence of mean stress on fretting fatigue crack initiation, characterized by the value of the Walker exponent, is smaller compared with plain fatigue. The fretting fatigue knockdown factor based on the Walker equivalent stress is 4. Formation of fretting cracks is primarily associated with the tangential force amplitude at the contact interface. A simple fretting fatigue crack initiation metric that is based on the strength of the singular stress field at the edge of contact is evaluated. The metric has the advantage in that it is neither dependent on the coefficient of friction nor the location of the stick/slip boundary, both of which are often difficult to define with certainty a priori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号