首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
通过对商用X80管线钢进行适当的Cu合金化功能性改进,制备出不同Cu含量(1.06Cu、1.46Cu、2.00Cu,质量分数,%)的新型管线钢。利用抗菌性能检测、电化学测试、腐蚀产物分析、激光共聚焦显微镜(CLSM)等方法研究了含Cu管线钢的抗菌性能和微生物腐蚀行为。研究表明,含Cu管线钢对大肠杆菌和金黄色葡萄球菌均具有强烈的杀灭作用,以多边形铁素体为特征的1.0Cu管线钢能够保证在X80钢强韧性的水平下具有优异的抗微生物腐蚀性能。含Cu管线钢中富Cu相对抗微生物腐蚀性能起到了关键作用。1.0Cu钢和X80钢的线性极化电阻RLPR在含有硫酸盐还原菌(SRB)的土壤浸出液中浸泡2 d后均急剧下降,导致X80钢的腐蚀电流密度明显大于1.0Cu钢。显微观察表明,大量生物膜的生成导致在SRB环境中的X80钢的点蚀数量和最大点蚀坑深度均高于1.0Cu钢。  相似文献   

2.
选用3种不同的热处理工艺对2519铝合金板材进行处理,采用测定试样在腐蚀前后力学性能的变化即腐蚀的力学性能指标Kσ和Kδ来评定2519铝合金的应力腐蚀敏感性。结果表明:2519铝合金板材经先高温后低温的双级时效处理(180℃,3h 145℃,24h)后力学性能最好,抗应力腐蚀性能最差;而经形变热处理(20℃,100h 冷加工15% 145℃,21h)后的力学性能较好,抗应力腐蚀性能最好;过时效状态(180℃,30h)下力学性能最差,抗应力腐蚀性能适中。  相似文献   

3.
本文通过拉伸试验、应力腐蚀试验和电镜观察研究了形变热处理工艺对铝锌镁合金(Al—4.75%Zn—1.50%Mg)板材机械性能、抗应力腐蚀性能和显微组织的影响。结果表明:预时效—冷变形—终时效的形变热处理工艺能显著提高铝锌镁合金板材的强度和抗蚀性能。在最佳的形变热处理工艺(100℃预时效3h—冷变形20%—135℃终时效4h)条件下,板材的横向机械性能可达:σ_b=557MPa、σ_(0.2)=505MPa、δ=8.3%。  相似文献   

4.
以实验室研发的高碳高铬50Cr15MoV含Cu抗菌刀具用钢为研究材料,采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)和维氏硬度计研究了其在不同热处理工艺下的微观组织和力学性能变化,探索了50Cr15MoV含Cu新型刀具用钢最佳热处理工艺。结果表明,50Cr15MoV含Cu刀具用钢的硬度在正火温度低于1050 ℃时逐渐升高,高于1050 ℃后逐渐降低,并随着回火温度的升高而逐渐下降,同时,50Cr15MoV含Cu刀具用钢经过500 ℃时效30 min后,由于富Cu相的析出,获得良好的抗菌性能,因此50Cr15MoV含Cu刀具用钢最佳热处理工艺为1050 ℃正火保温30 min后油淬+200 ℃回火保温90 min后空冷+500 ℃时效30 min后空冷。  相似文献   

5.
将Al-(4.0~7.0)%Zn-(5.0~6.0)%Cu-(0.8~1.4)%Mg的铝合金板材作T6(465℃固溶40分后水淬再150℃时效)、T851或T351形变热处理(465℃淬火后经3%冷形变,然后进行150℃人工时效或室温下自然时效)后,发现形变热处理的板材,其抗拉强度、屈服强度和延伸率均优于T6处理的。  相似文献   

6.
含Cu耐微生物腐蚀管线钢的开发和应用是解决管道微生物腐蚀难题的有效措施。本工作利用电化学测试及SEM、激光共聚焦显微镜(CLSM)等分析技术,研究了不同Cu含量(0、0.7%、1.34%,质量分数)的X65级管线钢在无菌和接种硫酸盐还原菌(SRB)的近中性模拟土壤浸出液(NS4)中的腐蚀行为,为耐微生物腐蚀管线钢的优化设计提供依据。结果表明,随着Cu含量的升高,含Cu管线钢的抗菌性能和耐蚀性能均有所提高;当Cu含量从0增加到0.70%时,试样表面的点蚀坑密度从714 cm-2下降到244 cm-2;当Cu含量达到1.34%时,点蚀坑密度进一步下降到67 cm-2;含Cu钢在腐蚀过程中持续释放的铜离子在接菌环境中的杀菌作用和其对腐蚀产物层的改善作用,以及其在无菌环境中所形成的Cu2O等保护性腐蚀产物是含Cu管线钢具有优异耐蚀性能的关键原因。  相似文献   

7.
采用光学显微镜、扫描电镜、透射电镜、电子万能试验机等试验手段,研究了7050热轧板T651态热处理工艺优化,分析了时效态板材的断裂机制,得到了最佳的时效热处理制度。结果表明,经过475℃×30min的固溶处理后,板材晶界处第二相基本完全固溶进铝基体,固溶效果良好;经过130℃×15h的时效处理后,板材的力学性能达到最高,其抗拉强度、屈服强度、伸长率分别为603MPa、539MPa、17%。  相似文献   

8.
通过对7075铝合金汽车发动机摇臂进行热处理工艺优化,并对3种时效状态下的7075铝合金汽车发动机摇臂的显微组织、力学性能及抗应力腐蚀性能进行了分析。结果表明,经过T6处理后,摇臂的强度达到了峰值,但电导率较低,即抗应力腐蚀性能较差;经过双级时效正交试验优化,合金强度稍有降低,电导率大幅提高,合金抗应力腐蚀性能得到改善的同时减少了生产时间及成本;该摇臂的最佳热处理制度为(460℃×1 h)固溶+(105℃×8 h+160℃×8 h)时效。  相似文献   

9.
酸性土壤浸出液中X80钢微生物腐蚀研究:(Ⅰ)电化学分析   总被引:1,自引:0,他引:1  
利用微生物和电化学方法研究了X80管线钢在一种酸性土壤浸出液中的硫酸盐还原菌(SRB)腐蚀电化学特征。结果表明,刚接种到酸性土壤浸出液中的SRB需要重新适应环境,该过程导致细菌数量大幅降低;接菌土壤浸出液中管线钢的开路电位低于灭菌土壤浸出液中的;实验前期活性生物膜对管线钢腐蚀起抑制作用,后期微生物代谢产物促进管线钢的腐蚀;SRB活动改变了金属/溶液的电介质性质,是实验后期促进管线钢腐蚀的重要原因。  相似文献   

10.
张建华  高燕  刘战英  杜秀珍 《轧钢》2007,24(2):18-22
在对Fe13Cr5AlxNb合金熔炼、锻造、轧制等制备工艺研究的基础上,利用光学显微镜、透射电镜、扫描电镜以及电子背散射衍射研究了合金板材的微观组织演化特征。研究了不同热处理温度(800、850、900、1 000 ℃)下合金板材中第二相的析出特点及对其力学性能的影响规律。结果表明,合金板材在800 ℃保温5~25 h后,其室温力学性能稳定;合金板材在800~1 000 ℃、20 h高温时效后,在800~850 ℃时,其强度稍有降低,而在900~1 000 ℃时,其强度随温度的升高而提升。同时,对不同Nb含量的合金板材常温和高温力学性能进行了测试,Nb质量分数为1.0%~1.5%时,合金板材具有良好的力学性能。  相似文献   

11.
采用电化学阻抗谱(EIS)、极化扫描和循环伏安(CV)等电化学技术,结合SEM表面形貌分析技术,研究高强度低合金X80管线钢在富Fe酸性红壤环境中的硫酸盐还原菌(SRB)腐蚀行为及电化学过程。结果表明,酸性红壤环境中,环境适应期(前7 d)SRB对腐蚀电化学过程没有明显影响;SRB生长期的呼吸代谢活动导致X80钢的自然腐蚀电位降低,显著促进了管线钢的腐蚀过程;SRB通过胞外铁呼吸可与红壤颗粒表层FeOOH/Fe_2O_3等铁氧化物发生作用,引起FeOOH/Fe_2O_3的微生物异化还原,该过程中,SRB作为电子传输媒介,参与Fe和氧化铁间的电子转移,该机制是SRB促进局部腐蚀电化学过程的主要原因。提出了SRB促进红壤中管线钢微生物腐蚀(MIC)与胞外铁呼吸机制之间的联系。  相似文献   

12.
通过研究热处理工艺对Al-Mg-Si-Zr-Er合金组织与性能的影响,确定了合金板材的峰时效热处理工艺,探讨了合金的析出与强化行为。研究结果表明:540℃固溶1 h后,合金板材的析出相得到充分溶解,再结晶组织也未发生明显粗化;时效时,合金的析出相主要为Mg2Si、Al Cu Mg Si(Q相)和Cu Al2等;Er和Zr元素的加入促进了β″相析出,并使β″相变得更为细小弥散,从而缩短了时效时间,提高时效强化效果;合金的峰时效工艺为540℃固溶1 h,180℃时效5 h;合金的时效强化是位错切过机制和绕过机制的综合作用;合金的较高强度源于合金凝固组织细化、Al3(Er,Zr)粒子的弥散强化以及Er和Zr元素的加入促进β″相析出细化等共同作用的结果。  相似文献   

13.
微生物腐蚀是造成管线材料破坏和失效并导致巨大经济损失的一个重要原因,发展具有耐微生物腐蚀性能的新型管线钢是从材料自身角度降低发生微生物腐蚀倾向的新途径,具有重要的科学意义和应用价值。在传统的管线钢化学成分基础上,通过适量的Cu合金化,在服役环境中发生的微量铜离子的持续释放会杀死细菌并抑制细菌生物膜形成,从而起到耐微生物腐蚀作用,这是提高管线钢耐微生物腐蚀性能的主要创新思想。本文通过总结当前管线钢的微生物腐蚀及其研究现状,提出了一种从材料角度防治微生物腐蚀的新方法。介绍了新型含Cu管线钢在合金设计、组织结构、力学性能、抗氢致开裂性能和耐微生物腐蚀性能方面的研究进展,重点介绍了含Cu管线钢在实验室条件下的耐微生物腐蚀性能研究结果,最后展望了新型含Cu管线钢的未来发展趋势。  相似文献   

14.
李刚  刘海涛  王辉  何琨  郑继云 《轧钢》2020,37(2):18-22
在对Fe13Cr5AlxNb合金熔炼、锻造、轧制等制备工艺研究的基础上,利用光学显微镜、透射电镜、扫描电镜以及电子背散射衍射研究了合金板材的微观组织演化特征。研究了不同热处理温度(800、850、900、1 000 ℃)下合金板材中第二相的析出特点及对其力学性能的影响规律。结果表明,合金板材在800 ℃保温5~25 h后,其室温力学性能稳定;合金板材在800~1 000 ℃、20 h高温时效后,在800~850 ℃时,其强度稍有降低,而在900~1 000 ℃时,其强度随温度的升高而提升。同时,对不同Nb含量的合金板材常温和高温力学性能进行了测试,Nb质量分数为1.0%~1.5%时,合金板材具有良好的力学性能。  相似文献   

15.
随时效温度的增加马氏体组织逐渐细化,马氏体板条间析出NbC颗粒;当时效温度达到550 ℃时有球状富Cu相析出。580 ℃开始有较弱的奥氏体衍射峰出现,即在时效中发生了马氏体向奥氏体的逆转变,620 ℃时,富Cu相由共格相转变为非共格相并聚集长大呈短棒状;随着时效温度的升高,腐蚀失重率逐渐增大,自腐蚀电位依次降低,电化学阻抗值不断减小,耐蚀性降低。  相似文献   

16.
7A55铝合金预拉伸板材的双级时效工艺   总被引:1,自引:0,他引:1  
研究了不同热处理工艺下7A55铝合金淬火预拉伸(W51)板材的力学性能、腐蚀性能、电导率变化以及相应的微观组织特点.用正交实验分析双级时效工艺,结果表明7A55铝合金双级时效的四因素中第二级时效温度和时间是影响最终性能的主要因素.淬火预拉伸7A55合金板材最佳双级时效热处理工艺分别为:T7651:121℃×5h+170℃×6h,T7451:121℃×5h+160`C×14h.电镜观察结果表明,T7451,T7651时效时晶内析出半共格的η'相和η相,并有不同程度粗化,晶界为断续分布的粗大η平衡相.这种微观结构能有效的提高7A55合金板材的电导率和腐蚀性能,同时使合金具有较高强度.  相似文献   

17.
本文深入研究了最终形变热处理工艺对Al-5.2Mg-3.1Zn铝合金组织性能的影响。通过维氏硬度测试研究了变形工艺对最终形变热处理最终时效工艺的影响。通过金相观察和透射电镜观察发现经过最终形变热处理的板材内部存留大量的位错结构和纤维状组织,且其含量取决于板材的变形工艺。通过板材的力学性能和晶间腐蚀性能研究发现:(1)变形温度的提高会降低板材的强度,但会提高板材的延伸率;而变形量的作用则恰恰与之相反;(2)提高变形温度和变形量都有利于提高板材的抗晶间腐蚀性能。  相似文献   

18.
对TC21钛合金板材进行不同工艺的热轧制及热处理试验,阐明了不同工艺条件下微观组织的演变规律,明确了板材强塑性、冲击功以及断裂行为与不同显微组织之间的对应关系。研究表明,随着轧制温度从930℃升高至1060℃,板材显微组织依次由板条组织变为等轴组织再变为双态组织,该过程中板材强度降低,塑性变化不大,冲击韧性无明显的规律性,960℃和1060℃轧制时板材冲击韧性较高;通过热处理同样可以有效调控显微组织,随着固溶温度从900℃升高至960℃,再经相同工艺时效处理后,原始的α相向β相转变,并在固溶温度为960℃时析出细小的α板条,该过程中强度先升高后降低,塑性和冲击韧性则先降低后升高。960℃轧制得到的TC21钛合金板材经过960℃×2 h/AC+590℃×4 h/AC热处理后,可获得较好的强韧匹配。  相似文献   

19.
利用Tafel极化曲线和电化学阻抗谱方法研究了X100管线钢在红壤中硫酸盐还原菌(SRB)腐蚀的电化学特征。结果表明,整个实验过程中SRB生理活动提高了红壤中管线钢的腐蚀速率,接菌红壤中管线钢的开路电位低于灭菌红壤土壤浸出液中;SRB生理活动影响管线钢表面腐蚀产物的电容和电阻性质,进而促进管线钢腐蚀过程;这种促进作用在实验后期SRB代谢产物富集时达到最大值;根据本文研究结果,铺设于酸性红壤中的管线钢必须考虑SRB对其腐蚀行为的影响。  相似文献   

20.
基于亚快速凝固原理的电磁振荡铸轧技术成功制备出汽车用AA6022铝合金薄板,为了提高终端产品的综合力学性能,对冷轧后的薄板开展了热处理工艺研究。结合金相显微镜(OM)、扫描电子显微镜(SEM、EBSD)、宏观硬度以及拉伸试验等检测方法,研究了不同热处理工艺参数对亚快速凝固板材微观组织和力学性能的影响规律。结果表明:Al-Ti-B晶粒细化剂与电磁场的复合应用可以显著提高细小等轴状晶粒比例;固溶+预时效处理可以显著抑制自然时效硬化效应、增强合金板材的抗自然时效稳定性、提高合金板材的冲压成形性能和烤漆硬化增量;在优化的热处理工艺条件下(560 ℃ × 5 min + 150 ℃ ×5 min+室温停放30 d+175 ℃ × 30 min),合金板材的屈服强度、抗拉强度、延伸率、宏观硬度以及r值,分别由1#式样的258.98 MPa、295.7 MPa、10.65%、47.6 HV、0.663提高至4#试样的295.71 MPa、322.01 MPa、16.09%、61.2 HV、0.753。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号