首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Experiments were conducted on the initial stages of reciprocating sliding wear of a 9% chromium steel in an environment of carbon dioxide at temperatures in the range 200 to 550°C. At ambient temperatures of 290°C and above, an initial severe wear mode was followed by a transition to mild oxidational wear. At any given ambient temperature above 290°C, the distance of sliding required to reach such a transition was found to depend on load and mean sliding speed, although the dependency on speed was not simple. When a transition occurred, most of the surfaces were covered with a stable oxide film which consisted of an agglomerate layer of wear debris being mainly of oxide at the surface and mainly at the metal boundary. This film was supported by a work hardened layer extending for about 30 μm into the bulk of the metal. A surface model is proposed to explain the mechanism of formation of the supportive oxide layer; predictions of volume of material removed and final oxide coverage at the transition are in close agreement with experimental values  相似文献   

2.
Room temperature ionic liquids (ILs) are high performance fluids with a wide thermal stability range. In this work we present the first study of ILs as lubricants under a wide range of temperature conditions (−30, 100, and 200 °C). The tribological performance of the imidazolium ionic liquids 1-hexyl, 3-methyl (L106) and 1-octyl, 3-methyl (L108) imidazolium tetrafluoroborates have been compared with that of a mineral oil (MO) and the synthetic ester propylene glycol dioleate (PGDO) in pin-on-disk aluminum–steel contacts. ILs show lower friction and wear values than conventional oils at all temperatures. The lubricating performance depends on thermal stability, polarity of the molecules, their ability to form ordered adsorbed layers and the tribocorrosion processes, which take place at the interface. While the conventional oils MO and PGDO fail above 150 °C due to thermal decomposition, the longer alkyl chain L108 provides an effective surface separation at all temperatures. L108 only shows friction and wear increments at −30 °C in the presence of water, due to severe abrasion. While the more polar, shorter alkyl chain L106 shows severe wear at 200 °C due to aluminum fluoride wear debris formation by tribocorrosion reactions. The time for tribocorrosion to take place has been determined from friction increments and wear debris generation. Wear mechanisms are discussed on the basis of SEM, EDS, and XPS results.  相似文献   

3.
An efficient numerical method based on Lobatto quadrature analysis is adopted for a rigorous analysis of temperature in elastohydrodynamic lubrication (EHL) line contacts. Temperature distributions are calculated for maximum Hertzian pressures and rolling speeds varying between 0.5 to 2.0 GPa and 1 to 30 m/s, respectively. Significant mid-film temperature and surface temperature increases have been observed at higher rolling speeds with an increase in loads and slip ratios. Results have been compared with the results of Manton, S. M., O'Donoghue, J. P. and Cameron, A., Temperatures at lubricated rolling/sliding contacts. Proceedings of the Institution of Mechanical Engineers, 1967–68, 182(417), 813–824. An empirical equation is presented for the prediction of non-dimensional maximum mid-film temperature in the contact zone in terms of the dimensionless thermal loading parameter Q, dimensionless load W and slip S, as:
  相似文献   

4.
Progress in the technology of magnetic media has brought about a remarkable increase in recording density. The most important factor determining the utility of magnetic disks is durability against head wear, and this durability is controlled by several factors. The present paper discusses the tribology of these media, particularly from the viewpoint of boundary lubrication. In that context there are two characteristic features of this lubrication regime: specific standard lubricants (fluoropolyethers such as Z‐DOL and perfluo‐ropolyethers such as Z‐15) and the newer application of these lubricants in the form of films only a few nanometers thick Advanced phosphazene‐type fluorinated compounds are of most interest at present, so these compounds are discussed in more detail. The emphasis is on X‐1P lubricant used either alone or as an additive for fluoro‐ and perfluoropolyethers deposited on protective diamond‐like carbon coatings.  相似文献   

5.
Rolf Waesche  Manfred Hartelt 《Wear》2009,267(12):2208-825
The high temperature tribological performance of tetrahedral amorphous carbon coatings has been analyzed at elevated temperatures up to 250 °C in air against three different counterbody materials—steel 100Cr6, α-alumina and silicon nitride. The results show that the counterbody material influences the friction and wear behavior and therefore coating life time strongly. This effect is well known for these coatings at room temperature under dry environmental conditions, equivalent to conditions above 100 °C when water molecules desorb from the surface. However, the sharp difference in tribological performance between silicon nitride on the one hand and alumina and steel on the other hand cannot be understood in this context. Analyzing the friction behavior during the running-in phase, it is evident that only alumina and steel form a stable interface with constant low friction and relatively low wear rates. Silicon nitride forms an unstable interface with fluctuating COF and relatively high wear rates due to its own inherent tendency to tribo-oxidation.  相似文献   

6.
A fifteen-minute test sequence has been developed for screening and ranking base oils and friction modifiers. The tests are run on a high-frequency friction machine developed at the authors' company and based on the Mills-Cameron design. The procedure can distinguish clearly and repeatably between the behaviour of different friction modifiers and with a degree of discrimination which is better than has been achieved in engine mechanical loss tests  相似文献   

7.
Although earlier investigations on the tribological behaviour of amcrphous hydrogenated carbon (AHC) films in sliding contact with steel showed encouraging results, four open issues were identified. They were: (a) dependence of friction and wear on humidity (i.e., the friction coefficient and the wear increased with humidity), (b) limitations on film thickness (i.e., films greater than 2 μm thick delaminated due to large compressive stress), (c) deposition of films on substrates other than silicon and (d) lubricant compatibility (i.e., formation of lubricant-derived antiwear films on AHC film surfaces). Steps were taken to address some of these open issues by incorporating silicon in AHC films. Friction and wear tests were conducted on AHC films containing various amounts of silicon. Incorporation of silicon in AHC films rendered the friction coefficients and the wear of a steel counterface insensitive to moisture. Silicon incorporation in AHC films also significantly reduced compressive stress. This allowed deposition of 10 μm thick films. These effects were achieved without any compromise with the friction coefficient and the film wear if the amount of silicon in the film was kept within a certain concentration range. In addition, silicon-containing AHC films were thermally more stable than silicon-free films. Experiments conducted with two lubricants resulted in significantly lower wear of the silicon-free AHC films than that obtained for unlubricated sliding. Similar friction coefficients were obtained for AHC film/steel and steel/steel combinations in lubricated sliding.  相似文献   

8.
The antioxidant efficacy of various oxidation inhibitors in low erucic acid rapeseed oil has been studied in a screening test at 130°C by an induction period method. Hindered monophenols, sulphides, phosphites, aromatic amines and zinc dithiophosphates yielded no or only marginal stabilising effects. Remarkably increased oxidation stabilities were observed with certain hindered bisphenols, polyhydroxybenzenes, zinc and bismuth dithiocarbamates. In high oleic sunflower oil with a lesser portion of multiple unsaturation, these additives induced relatively longer induction periods. Mixtures of zinc dithiocarbamates and 4,4′-methylenebis-(2, 6-di-tert-butylphenol) or octylated di-phenylamine, as well as compositions of all three compounds, exhibited synergistic effects. Under the conditions employed these additives were distinctly superior to commercially recommended formulations. A mechanistic concept of the antioxidant action of zinc dithiocarbamate is briefly discussed.  相似文献   

9.
Temperature rise in carbon steel (SUJ2-ASTM E52100) and stainless steel (SUS440C-ASTM 440C) balls sliding against diamond like carbon was evaluated using thermal simulation. On the premise that most of the friction energy was consumed as friction heat, the temperature distribution in the steel balls was simulated by ANSYS thermal conduction analysis using the friction energy measured by the ball on disc test. The interior temperatures of the steel balls were also monitored by a thermocouple during the tribotest. The simulation data, calibrated by the heat partition rate based on the Peclet number, were compared to the experiment data, and good accordance of both data was demonstrated.  相似文献   

10.
ABSTRACT

Tribological studies were carried out with tetrahedral amorphous diamond-like carbon (ta-C DLC) coatings, varying in thickness and roughness, using two different contact configurations lubricated with seven types of hydraulic oils. Tribopair of cast iron and ta-C coated steel were tested in both non-conformal and conformal, unidirectional sliding contacts. The friction and wear results were mainly affected by the thickness of the coating in the non-conformal contact and the surface roughness of the coating in the conformal contact. Tests done with mineral base oil containing rust inhibitor in the non-conformal contact and with Polyalphaolefins and synthetic ester base oils in the conformal contact resulted in the lowest friction while that with mineral base oil containing zinc resulted in high friction and counterface wear. The results highlight the interdependence of contact configuration, lubricant chemistry, coating’s surface morphology and coating’s thickness in determining the tribological behaviour of ta-C coatings under boundary lubrication.  相似文献   

11.
This paper describes the methods for the deposition of AHC films on aluminium alloys (2024, 7075 and an additional Al-Si alloy) and AISI 4340 steel. Both unmodified and silicon modified AHC films were deposited. AHC films could be deposited on aluminium alloys without any interlayer. The deposition of AHC films on steel required an interlayer which could be aluminium, silicon or chromium. Thin films (1–2 μm) deposited on aluminium alloys and steel influenced durability of films and friction coefficients in contact with steel. These were believed to be due to plastic deformation of substrates. Deposition of a thicker coating system (interlayer + AHC) reduced friction coefficients and also improved film durability. The durability of films deposited on steel substrates was evaluated under both unlubricated and lubricated conditions for 5.5 million cycles under 4.4 N load and up to 2.5 m/s sliding speed. Although there was wear, the films survived 5.5 million test cycles under unlubricated sliding, but in the presence of two lubricants, the film wear was very small and could not be measured. It was observed that the wear of the steel counterface in contact with silicon-containing AHC films could be higher than that against an uncoated steel in the presence of certain lubricants.  相似文献   

12.
Amorphous carbon (a-C) coating with luminescent wear-sensing underlayer is developed for achieving the tribological coating with wear monitoring capability. Wear monitoring of a-C coating by luminescent spectroscopy to determine the remaining thickness of the coating after the wear test is also demonstrated. The coating structure consists of a-C films deposited by R.F. magnetron sputtering method onto the luminescent layer, which is made from silica coating containing CdSe/ZnS quantum dots (Silica/QD). A thin Si-intermediate layer is added between a-C and silica/QD layer for adhesion improvement. The physical as well as tribological properties of the coatings are analysed. Furthermore, wear monitoring of a-C films is also demonstrated to determine the remaining coating thickness after the tribological test. The demonstration is carried out by firstly formulating a relation between luminescent intensity detected from the coating and coating thickness. Then the luminescent intensity is measured again from the wear track. The remaining thickness is finally determined by using the relationship between luminescent intensity and coating thickness. The fabricated coating exhibits a smooth surface with the average surface roughness of 1.35 nm and a friction coefficient of 0.1. The demonstration of wear monitoring shows that the remaining thickness of the coating after the tribological test determined by luminescent spectroscopy is compared well with the thickness measured by profilometry. This suggests that wear monitoring of a-C films by luminescent spectroscopy technique is feasible.  相似文献   

13.
同轴空间相机碳纤维复合材料桁架结构的研制   总被引:2,自引:2,他引:0  
从某空间相机的任务需求出发,提出了采用基于碳纤维复合材料的高精密桁架作为主次镜间的支撑结构,完成了相关设计和工程分析,并在加工制造过程中,对相关工艺流程进行了探索.确定了相关结构的制造工艺流程,实现了该结构的高精密加工.最后,深入开展了相关振动、力学和温度稳定性试验,搭建了基于光学测量方法的自动测试平台,排除了人为因素的影响,实现了快速多次自动测量,从而提高了测试精度.分析和试验结果表明:所研制的大型碳纤维桁架质量仅为13 kg,基频达到119 Hz,在重力、10℃温升和4℃温差条件下的变形均小于4″,各组件φ864 mm安装接口的平面度优于8μm,同时实现了高度轻量化和高稳定性.该桁架已成功应用于某空间相机中,提出的设计、试验方案和工艺流程可以作为其它同型空间相机结构设计的技术参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号