首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The central theme of this paper is multiplicative polynomial dimensional decomposition (PDD) methods for solving high‐dimensional stochastic problems. When a stochastic response is dominantly of multiplicative nature, the standard PDD approximation, predicated on additive function decomposition, may not provide sufficiently accurate probabilistic solutions of a complex system. To circumvent this problem, two multiplicative versions of PDD, referred to as factorized PDD and logarithmic PDD, were developed. Both versions involve a hierarchical, multiplicative decomposition of a multivariate function, a broad range of orthonormal polynomial bases for Fourier‐polynomial expansions of component functions, and a dimension‐reduction or sampling technique for estimating the expansion coefficients. Three numerical problems involving mathematical functions or uncertain dynamic systems were solved to corroborate how and when a multiplicative PDD is more efficient or accurate than the additive PDD. The results show that indeed, both the factorized and logarithmic PDD approximations can effectively exploit the hidden multiplicative structure of a stochastic response when it exists. Since a multiplicative PDD recycles the same component functions of the additive PDD, no additional cost is incurred. Finally, the random eigensolutions of a sport utility vehicle comprising 40 random variables were evaluated, demonstrating the ability of the new methods to solve industrial‐scale problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A new moment-modified polynomial dimensional decomposition (PDD) method is presented for stochastic multiscale fracture analysis of three-dimensional, particle-matrix, functionally graded materials (FGMs) subject to arbitrary boundary conditions. The method involves Fourier-polynomial expansions of component functions by orthonormal polynomial bases, an additive control variate in conjunction with Monte Carlo simulation for calculating the expansion coefficients, and a moment-modified random output to account for the effects of particle locations and geometry. A numerical verification conducted on a two-dimensional FGM reveals that the new method, notably the univariate PDD method, produces the same crude Monte Carlo results with a five-fold reduction in the computational effort. The numerical results from a three-dimensional, edge-cracked, FGM specimen under a mixed-mode deformation demonstrate that the statistical moments or probability distributions of crack-driving forces and the conditional probability of fracture initiation can be efficiently generated by the univariate PDD method. There exist significant variations in the probabilistic characteristics of the stress-intensity factors and fracture-initiation probability along the crack front. Furthermore, the results are insensitive to the subdomain size from concurrent multiscale analysis, which, if selected judiciously, leads to computationally efficient estimates of the probabilistic solutions.  相似文献   

3.
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.  相似文献   

4.
This paper presents three new computational methods for calculating design sensitivities of statistical moments and reliability of high‐dimensional complex systems subject to random input. The first method represents a novel integration of the polynomial dimensional decomposition (PDD) of a multivariate stochastic response function and score functions. Applied to the statistical moments, the method provides mean‐square convergent analytical expressions of design sensitivities of the first two moments of a stochastic response. The second and third methods, relevant to probability distribution or reliability analysis, exploit two distinct combinations built on PDD: the PDD‐saddlepoint approximation (SPA) or PDD‐SPA method, entailing SPA and score functions; and the PDD‐Monte Carlo simulation (MCS) or PDD‐MCS method, utilizing the embedded MCS of the PDD approximation and score functions. For all three methods developed, the statistical moments or failure probabilities and their design sensitivities are both determined concurrently from a single stochastic analysis or simulation. Numerical examples, including a 100‐dimensional mathematical problem, indicate that the new methods developed provide not only theoretically convergent or accurate design sensitivities, but also computationally efficient solutions. A practical example involving robust design optimization of a three‐hole bracket illustrates the usefulness of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a new, univariate dimension-reduction method for calculating statistical moments of response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of a multi-dimensional response function into multiple one-dimensional functions, an approximation of response moments by moments of single random variables, and a moment-based quadrature rule for numerical integration. The resultant moment equations entail evaluating N number of one-dimensional integrals, which is substantially simpler and more efficient than performing one N-dimensional integration. The proposed method neither requires the calculation of partial derivatives of response, nor the inversion of random matrices, as compared with commonly used Taylor expansion/perturbation methods and Neumann expansion methods, respectively. Nine numerical examples involving elementary mathematical functions and solid-mechanics problems illustrate the proposed method. Results indicate that the univariate dimension-reduction method provides more accurate estimates of statistical moments or multidimensional integration than first- and second-order Taylor expansion methods, the second-order polynomial chaos expansion method, the second-order Neumann expansion method, statistically equivalent solutions, the quasi-Monte Carlo simulation, and the point estimate method. While the accuracy of the univariate dimension-reduction method is comparable to that of the fourth-order Neumann expansion, a comparison of CPU time suggests that the former is computationally far more efficient than the latter.  相似文献   

6.
As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed.  相似文献   

7.
This article presents a new polynomial dimensional decomposition method for solving stochastic problems commonly encountered in engineering disciplines and applied sciences. The method involves a hierarchical decomposition of a multivariate response function in terms of variables with increasing dimensions, a broad range of orthonormal polynomial bases consistent with the probability measure for Fourier‐polynomial expansion of component functions, and an innovative dimension‐reduction integration for calculating the coefficients of the expansion. The new decomposition method does not require sample points as in the previous version; yet, it generates a convergent sequence of lower‐variate estimates of the probabilistic characteristics of a generic stochastic response. The results of five numerical examples indicate that the proposed decomposition method provides accurate, convergent, and computationally efficient estimates of the tail probability of random mathematical functions or the reliability of mechanical systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Given their mathematical structure, methods for computational stochastic analysis based on orthogonal approximations and projection schemes are well positioned to draw on developments from deterministic approximation theory. This is demonstrated in the present paper by extending basis enrichment from deterministic analysis to stochastic procedures involving the polynomial chaos decomposition. This enrichment is observed to have a significant effect on the efficiency and performance of these stochastic approximations in the presence of non‐continuous dependence of the solution on the stochastic parameters. In particular, given the polynomial structure of these approximations, the severe degradation in performance observed in the neighbourhood of such discontinuities is effectively mitigated. An enrichment of the polynomial chaos decomposition is proposed in this paper that can capture the behaviour of such non‐smooth functions by integrating a priori knowledge about their behaviour. The proposed enrichment scheme is applied to a random eigenvalue problem where the smoothness of the functional dependence between the random eigenvalues and the random system parameters is controlled by the spacing between the eigenvalues. It is observed that through judicious selection of enrichment functions, the spectrum of such a random system can be more efficiently characterized, even for systems with closely spaced eigenvalues. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
We propose a hybrid formulation combining stochastic reduced basis methods with polynomial chaos expansions for solving linear random algebraic equations arising from discretization of stochastic partial differential equations. Our objective is to generalize stochastic reduced basis projection schemes to non-Gaussian uncertainty models and simplify the implementation of higher-order approximations. We employ basis vectors spanning the preconditioned stochastic Krylov subspace to represent the solution process. In the present formulation, the polynomial chaos decomposition technique is used to represent the stochastic basis vectors in terms of multidimensional Hermite polynomials. The Galerkin projection scheme is then employed to compute the undetermined coefficients in the reduced basis approximation. We present numerical studies on a linear structural problem where the Youngs modulus is represented using Gaussian as well as lognormal models to illustrate the performance of the hybrid stochastic reduced basis projection scheme. Comparison studies with the spectral stochastic finite element method suggest that the proposed hybrid formulation gives results of comparable accuracy at a lower computational cost.  相似文献   

10.
Sample pathwise numerical integration of noise-driven engineering dynamical systems cannot generally be performed beyond a limited level of accuracy, especially when the noise processes are modelled using (filtered) white noises. Recently, a locally transversal linearization (LTL) strategy has been proposed by the author (Proc Roy Soc London A 2001; 457 :539–566) for direct integration of deterministic and stochastic non-linear dynamical systems. The present effort is focussed on a host of extensions along with detailed theoretical error analyses of the linearization approach, especially as applied to problems in non-linear stochastic engineering dynamics. Thus, to begin with, estimates of local and global error orders in the basic LTL scheme are obtained separately for the displacement and velocity vectors when the system is driven either by a set of additive noises or by an arbitrary combination of (independently evolving) additive and multiplicative noises. Following this, a new family of higher-order LTL schemes is proposed in order to improve upon the basic LTL method and the associated error orders are established. A stepwise implementation of the lower- and higher-order versions of the LTL method, along with certain computational aspects, is also outlined. The proposed schemes are numerically illustrated, to a limited extent, for a single degree-of-freedom (SDOF) and a two degree-of-freedom (TDOF) non-linear engineering systems under additive and/or multiplicative white noise excitations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A new class of computational methods, referred to as decomposition methods, has been developed for predicting failure probability of structural and mechanical systems subject to random loads, material properties, and geometry. The methods involve a novel function decomposition that facilitates univariate and bivariate approximations of a general multivariate function, response surface generation of univariate and bivariate functions, and Monte Carlo simulation. Due to a small number of original function evaluations, the proposed methods are very effective, particularly when a response evaluation entails costly finite-element, mesh-free, or other numerical analysis. Seven numerical examples involving elementary mathematical functions and solid-mechanics problems illustrate the methods developed. Results indicate that the proposed methods provide accurate and computationally efficient estimates of probability of failure.  相似文献   

12.
Deepak Kumar  T. K. Datta 《Sadhana》2006,31(4):325-342
A stochastic averaging procedure for obtaining the probability density function (PDF) of the response for a strongly nonlinear single-degree-of-freedom system, subjected to both multiplicative and additive random excitations is presented. The procedure uses random Van Der Pol transformation, Ito’s equation of limiting diffusion process and stochastic averaging technique as outlined by Zhu and others. However, the equations are rederived in generalized form and arranged in such a way that the procedure lends itself to a numerical computational scheme using FFT. The main objective of the modification is to consider highly irregular nonlinear functions which cannot be integrated in closed form and also to solve problems where analytical expressions for probability density function cannot be obtained. The procedure is applied to obtain the PDF of the response of Duffing oscillator subjected to additive and multiplicative random excitations represented by rational power spectral density functions (PSDFs). The results are verified by digital simulation. It is shown that the procedure provides results which compare very well with those obtained from simulation analysis not only for wide-band excitations but also for very narrow-band excitations, which are weak (when normalized with respect to mass of the system.) This paper is dedicated to Prof R N Iyengar of the Indian Institute of Science on the occasion of his formal retirement.  相似文献   

13.
In this paper, a new computational framework based on the topology derivative concept is presented for evaluating stochastic topological sensitivities of complex systems. The proposed framework, designed for dealing with high dimensional random inputs, dovetails a polynomial dimensional decomposition (PDD) of multivariate stochastic response functions and deterministic topology derivatives. On one hand, it provides analytical expressions to calculate topology sensitivities of the first three stochastic moments which are often required in robust topology optimization (RTO). On another hand, it offers embedded Monte Carlo Simulation (MCS) and finite difference formulations to estimate topology sensitivities of failure probability for reliability-based topology optimization (RBTO). For both cases, the quantification of uncertainties and their topology sensitivities are determined concurrently from a single stochastic analysis. Moreover, an original example of two random variables is developed for the first time to obtain analytical solutions for topology sensitivity of moments and failure probability. Another 53-dimension example is constructed for analytical solutions of topology sensitivity of moments and semi-analytical solutions of topology sensitivity of failure probabilities in order to verify the accuracy and efficiency of the proposed method for high-dimensional scenarios. Those examples are new and make it possible for researchers to benchmark stochastic topology sensitivities of existing or new algorithms. In addition, it is unveiled that under certain conditions the proposed method achieves better accuracies for stochastic topology sensitivities than for the stochastic quantities themselves.  相似文献   

14.
In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi-element stochastic collocation methods and is capable of dealing with very high-dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi-element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non-Gaussian uncertainties. To solve large systems, a reduced-order model (ROM) of the high-dimensional response is identified using singular value decomposition (higher-order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods.  相似文献   

15.
Design optimization is a computationally expensive process as it requires the assessment of numerous designs and each of such assessments may be based on expensive analyses (e.g. computational fluid dynamics method or finite element based method). One way to contain the computational time within affordable limits is to use computationally cheaper approximations (surrogates) in lieu of the actual analyses during the course of optimization. This article introduces a framework for design optimization using surrogates. The framework is built upon a stochastic, zero-order, population-based optimization algorithm, which is embedded with a modified elitism scheme, to ensure convergence in the actual function space. The accuracy of the surrogate model is maintained via periodic retraining and the number of data points required to create the surrogate model is identified by a k-means clustering algorithm. A comparison is provided between different surrogate models (Kriging, radial basis functions (Exact and Fixed) and Cokriging) using a number of mathematical test functions and engineering design optimization problems. The results clearly indicate that for a given fixed number of actual function evaluations, the surrogate assisted optimization model consistently performs better than a pure optimization model using actual function evaluations.  相似文献   

16.
The paper considers a first passage time reliability problem for systems subjected to multiplicative and additive white noises. For numerical calculations of the reliability function and the first passage time the path integration method is properly adapted and used. Some results of numerical calculations are compared to approximate analytical results, obtained by the stochastic averaging method.  相似文献   

17.
A significant amount of problems and applications in stochastic mechanics and engineering involve multi-dimensional random functions. The probabilistic analysis of these problems is usually computationally very expensive if a brute-force Monte Carlo method is used. Thus, a technique for the optimal selection of a moderate number of samples effectively representing the entire space of sample realizations is of paramount importance. Functional Quantization is a novel technique that has been proven to provide optimal approximations of random functions using a predetermined number of representative samples. The methodology is very easy to implement and it has been shown to work effectively for stationary and non-stationary one-dimensional random functions. This paper discusses the application of the Functional Quantization approach to the domain of multi-dimensional random functions and the applicability is demonstrated for the case of a 2D non-Gaussian field and a two-dimensional panel with uncertain Young modulus under plane stress.  相似文献   

18.
One of the major difficulties in solving stochastic mechanics problems is the curse of dimensionality, where an exponential increase in the dimension of the problem is encountered with the increase in the number of random variables and/or order of expansion considered in any approximation. A prominent method in addressing the curse of dimensionality is ANOVA dimension Decomposition (ADD), which represents a mathematical function with multiple lower variate functions. These lower variate functions are represented using orthogonal polynomials, which yields Polynomial Dimensional Decomposition (PDD). In recent articles, the authors proposed an Iterative Polynomial Chaos (ImPC) based method for the solution of structural mechanics problems, where computational efficacy of ImPC was demonstrated against Polynomial Chaos (PC). In ImPC, the problems are solved iteratively using smaller sizes of PC expansions. Thus, it reduces the curse of dimensionality of PC expansion. The PDD reduces the size of the system matrix by considering a fewer number of random variables at a time, while ImPC can be considered to solve each components of PDD iteratively so that a converged solution can be achieved without increasing the order of expansion, which is termed as iterative PDD in the present study. Thus, the overall convergence can be achieved with a lesser size of the system matrix, which enables to perform analyses with a lesser computational facility. Further, the stiffness matrix size can be reduced by considering the random field at Gauss points instead of the mid point. Numerical studies with both Gaussian and non-Gaussian random field of Young’s modulus are conducted, and computational efficiency of the iterative PDD is compared with that of PDD, ImPC, and first order perturbation method. The iterative PDD is observed to be computationally less demanding and exhibits reduced dimensional curse.  相似文献   

19.
A priori model reduction methods based on separated representations are introduced for the prediction of the low frequency response of uncertain structures within a parametric stochastic framework. The proper generalized decomposition method is used to construct a quasi‐optimal separated representation of the random solution at some frequency samples. At each frequency, an accurate representation of the solution is obtained on reduced bases of spatial functions and stochastic functions. An extraction of the deterministic bases allows for the generation of a global reduced basis yielding a reduced order model of the uncertain structure, which appears to be accurate on the whole frequency band under study and for all values of input random parameters. This strategy can be seen as an alternative to traditional constructions of reduced order models in structural dynamics in the presence of parametric uncertainties. This reduced order model can then be used for further analyses such as the computation of the response at unresolved frequencies or the computation of more accurate stochastic approximations at some frequencies of interest. Because the dynamic response is highly nonlinear with respect to the input random parameters, a second level of separation of variables is introduced for the representation of functions of multiple random parameters, thus allowing the introduction of very fine approximations in each parametric dimension even when dealing with high parametric dimension. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This work compares sample‐based polynomial surrogates, well suited for moderately high‐dimensional stochastic problems. In particular, generalized polynomial chaos in its sparse pseudospectral form and stochastic collocation methods based on both isotropic and dimension‐adapted sparse grids are considered. Both classes of approximations are compared, and an improved version of a stochastic collocation with dimension adaptivity driven by global sensitivity analysis is proposed. The stochastic approximations efficiency is assessed on multivariate test function and airfoil aerodynamics simulations. The latter study addresses the probabilistic characterization of global aerodynamic coefficients derived from viscous subsonic steady flow about a NACA0015 airfoil in the presence of geometrical and operational uncertainties with both simplified aerodynamics model and Reynolds‐Averaged Navier‐Stokes (RANS) simulation. Sparse pseudospectral and collocation approximations exhibit similar level of performance for isotropic sparse simulation ensembles. Computational savings and accuracy gain of the proposed adaptive stochastic collocation driven by Sobol' indices are patent but remain problem‐dependent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号