首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most significant positive effects on product and process development in recent years has been the application of data management techniques. Engineering data management or product data management is the most promising one. The implementation of engineering data management is heavily dependent on the engineering process and involves the technologies of management, engineering, and information. However, as there is no commonly acceptable approach and methodologies for implementing engineering data management, it’s implementation becomes a bottleneck.This paper presents a structured methodology for the implementation of engineering data management. The approach consists of a series of steps, from business and engineering process analysis, modeling and reengineering, through system design and modeling, to system realization.This research will facilitate engineering process improvement and the planning, design and implementation of engineering data management. Consequently, it will help increase product development capability and quality, reduce development cycle time and cost, and hence increase product marketability.  相似文献   

2.
Engineering product family design and optimization in complex environments has been a major bottleneck in today’s industrial transformation towards smart manufacturing. Digital twin (DT), as a core part of cyber-physical system (CPS), can provide decision support to enhance engineering product lifecycle management workflows via remote monitoring and control, high-fidelity simulation, and solution generation functionalities. Although many studies have proven DT to be highly suited for industry needs, little has been reported on the product family design and optimization capabilities specifically with context awareness, which could be leaving many enterprises ambivalent on its adoption. To fill this gap, a reusable and transparent DT capable of situational recognition and self-correction is essentially required. This paper develops a generic DT architecture reference model to enable the context-aware product family design optimization process in a cost-effective manner. A case study featuring asset re-/configuration within a dynamic environment is further described to demonstrate its in-context decision-aiding capabilities. The authors hope this study can provide valuable insights to both academia and industry in improving their engineering product family management process.  相似文献   

3.
The companies need to rapid response to new product introduction, mix and demand changes to stay competitive. A reconfigurable manufacturing system can quickly react to changes in products and market. The control method to reconfigure the machines of a reconfigurable manufacturing system is crucial for the performance level. This paper proposes a reconfiguration decision-making method based on a Game-Theory algorithm, and in particular the Gale-Shapley model. A periodic review strategy is used to create two sets: one set of machine over-loaded and one set under-loaded. The Gale-Shapley model forms a coupled of over-loaded and under-loaded machines. The reconfiguration concerns the under-loaded machine of the coupled adding also the task performed by the over-loaded machine. This paper presents a simulation environment developed to evaluate the proposed method and highlight the main topics. The simulation results highlight how the game-theory approach developed improves all the performance measures with controlled number of machines’ reconfigurations.  相似文献   

4.
During the last decade, integration between design and manufacturing has shown to be a major competitive weapon and much research work has been carried out about considering at the product design stage production process issues.Most of the literature on such techniques focuses on integrating the design of a product and the design of its manufacturing processes, disregarding issues related to the design and management of the manufacturing system. Nonetheless, decisions taken at the product and process design stage could have an influence on typical production planning and control issues such as, for example, minimising lead times and maximising machine utilisation.Many research works show the advantage of a higher process flexibility, in terms of machine utilisation, manufacturing lead time, inventory level, and the like (see, for example, Tsubone and Horikawa, The International Journal of Flexible Manufacturing Systems 11 (1999) 83 or Ferreira and Wysk, Journal of Manufacturing System 19 (2001)), but developing alternative machine possibility has a cost that is not negligible (International Journal of Production Economics 48 (1997) 237). Therefore, guidelines are needed for identifying for what items and for which operations to develop alternative processes.In this paper, the relationship between alternative processes availability and manufacturing system performances are investigated, showing that the advantage of additional alternative process decreases as the number of alternatives increases, and that given a certain number of alternative processes developed, there is a strong difference in performances depending on what alternative processes have been implemented. Then a new procedure is presented for guiding in selecting for which operations to implement alternative processes in order to maximise the flexibility advantages limiting the implementation cost.The proposed procedure is then tested, under different operating conditions, against a practical rule by means of a simulation model.  相似文献   

5.
Computer and communication network is a key component of the flexible manufacturing system. In this paper analytical models based on integer programming methods have been developed for optimally allocating communication and control resources in a manufacturing shop. Subsequently, a procedure to measure the performance of such an optimal set of hardware is developed. First, a deterministic procedure is used to put an upper limit on the systems performance, based on the bottleneck resource. Next, closed queuing network models are used to obtain a better estimate of performance that also includes the randomness in the system. Finally, for more accurate results simulation models are developed. Average production rates and average time in the system are used as performance measures to check for acceptability of the design.  相似文献   

6.
随着材料科学和工程的发展,新的材料不断涌现,恰当地运用材料可以实现产品概念设计中的创新。本文从材料这一角度,以手机概念设计为实例,探讨由于产品材料、材料工艺的不同而导致的产品概念设计步骤多样化和产品设计结果的多样化,为设计师掌握材料信息、运用材料进行设计并实现产品概念设计的多样性提供参考方法和意见。  相似文献   

7.
For over 3 decades there was a belief that computer-based solutions would "solve" complex industrial scheduling problems, yet most manufacturing organizations still require human contributions for effective scheduling performance. We present a new model of scheduling for the development and implementation of effective scheduling systems within manufacturing companies. The model derives from investigating the work of 7 schedulers in 4 manufacturing environments using a qualitative field study approach, for which novel field-based data collection and analysis methods were developed. The results show that scheduling in practice comprises task, role, and monitoring activities and that the business environment influences a scheduler at work. A new definition of scheduling is presented that includes the significant facilitation and implementation aspects of human scheduling ignored by many computer-based scheduling approaches. The implications for this model extend across the domains of human factors and operations management, especially for the analysis and improvement of existing and new production planning and control processes and enterprise information systems. Actual or potential applications of this research include the analysis, design, and management of planning, scheduling, and control processes in industry; the selection, training, and support of production schedulers; and the allocation of tasks to humans and computer systems in industrial planning, scheduling, and control processes.  相似文献   

8.
The task of design, planning and operation of manufacturing networks is becoming more and more challenging for companies, as globalisation, mass customisation and the turbulent economic landscape create demand volatility, uncertainties and high complexity. In this context, this paper investigates the performance of decentralised manufacturing networks through a set of methods developed into a software framework in a toolbox approach. The Tabu Search and Simulated Annealing metaheuristic methods are used together with an Artificial Intelligence method, called Intelligent Search Algorithm. A multi-criteria decision making procedure is carried out for the evaluation of the quality of alternative manufacturing network configurations using multiple conflicting criteria including dynamic complexity, reliability, cost, time, quality and environmental footprint. A comparison of the performance of each method based on the quality of the solutions that it provided is carried out. The statistical design of experiments robust engineering technique is used for the calibration of the adjustable parameters of the methods. Moreover, the impact of demand fluctuation to the operational performance of the alternative networks, expressed thorough a dynamic complexity indicator, is investigated through simulation. The developed framework is validated through a real life case, with data coming from the CNC machine building industry.  相似文献   

9.
Cloud-based design manufacturing (CBDM) refers to a service-oriented networked product development model in which service consumers are enabled to configure, select, and utilize customized product realization resources and services ranging from computer-aided engineering software to reconfigurable manufacturing systems. An ongoing debate on CBDM in the research community revolves around several aspects such as definitions, key characteristics, computing architectures, communication and collaboration processes, crowdsourcing processes, information and communication infrastructure, programming models, data storage, and new business models pertaining to CBDM. One question, in particular, has often been raised: is cloud-based design and manufacturing actually a new paradigm, or is it just “old wine in new bottles”? To answer this question, we discuss and compare the existing definitions for CBDM, identify the essential characteristics of CBDM, define a systematic requirements checklist that an idealized CBDM system should satisfy, and compare CBDM to other relevant but more traditional collaborative design and distributed manufacturing systems such as web- and agent-based design and manufacturing systems. To justify the conclusion that CBDM can be considered as a new paradigm that is anticipated to drive digital manufacturing and design innovation, we present the development of a smart delivery drone as an idealized CBDM example scenario and propose a corresponding CBDM system architecture that incorporates CBDM-based design processes, integrated manufacturing services, information and supply chain management in a holistic sense.  相似文献   

10.
The engineering of laminated composite structures is a complex task for design engineers and manufacturers, requiring significant management of manufacturing process and materials information. Ontologies are becoming increasingly commonplace for semantically representing knowledge in a formal manner that facilitates sharing of rich information between people and applications. Moreover, ontologies can support first-order logic and reasoning by rule engines that enhance automation. To support the engineering of laminated composite structures, this work developed a novel Semantic LAminated Composites Knowledge management System (SLACKS) that is based on a suite of ontologies for laminated composites materials and design for manufacturing (DFM) and their integration into a previously developed engineering design framework. By leveraging information from CAD/FEA tools and materials data from online public databases, SLACKS uniquely enables software tools and people to interoperate, to improve communication and automate reasoning during the design process. With SLACKS, this paper shows the power of integrating relevant domains of the product life cycle, such as design, analysis, manufacturing and materials selection through the engineering case study of a wind turbine blade. The integration reveals a usable product-life-cycle knowledge tool that can facilitate efficient knowledge creation, retrieval and reuse from design inception to manufacturing of the product.  相似文献   

11.
Mass-customization has forced manufacturing companies to put significant efforts to digitize and automate their engineering and production processes. When new products are to be developed and introduced the production is not alone to be automated. The application of knowledge regarding how the product should be designed and produced based on customer requirements also must be automated. One big academic challenge is helping industry to make sure that the background knowledge of the automated engineering processes still can be understood by its stakeholders throughout the product life cycle.The research presented in this paper aims to build an infrastructure to support a connectivistic view on knowledge in knowledge based engineering. Fundamental concepts in connectivism include network formation and contextualization, which are here addressed by using graph theory together with information filtering techniques and quality assurance of CAD-models. The paper shows how engineering knowledge contained in spreadsheets, knowledge-bases and CAD-models can be penetrated and represented as filtered graphs to support a connectivistic working approach. Three software demonstrators developed to extract filtered graphs are presented and discussed in the paper.  相似文献   

12.
This research work aims to develop an intelligent constraint-based system that enables designers to consider at the early stages of the design process all activities associated with product’s life cycle. One of the most important aspects of these activities is the evaluation and optimisation of manufacturing processes that require various type of information from the different aspects of product’s life cycle. This research article discusses the development of a prototype system for manufacturing process optimisation using a combination of both mathematical methods and constraint-programming techniques. This approach enables designers to evaluate and optimise feasible manufacturing processes in a consistent manner as early as possible during the design process. This helps in avoiding unexpected design iterations that wastage a great amount of time and effort, leading to longer lead-time. The development process has passed through the five major stages: Firstly, an intelligent constraint-based design system for concurrent product and process design has been developed. Secondly, a manufacturing process optimisation module has been constructed. Thirdly, the product features, processes, cost, time and constraints to be used for carrying out various design tasks has been represented in the format of constraints, frames, objects, and rules. Fourthly, the process optimisation and evaluation rules for the selection of feasible processes for complex features, and finally, the information management system that ensures consistency in information exchange and decision making activities have been developed.  相似文献   

13.
As Additive Manufacturing becomes increasingly prevalent in commercial manufacturing environments, the need to effectively consider optimal strategies for management is increased. At present most research has focused on individual machines, yet there is a wealth of evidence to suggest competitive manufacturing is best managed from a systems perspective. Through 14 case studies developed with four long-established Additive Manufacturing companies this paper explores the conduct of Industrial AM in contemporary manufacturing environments. A multitude of activities, mechanisms, and controls are identified through this detailed investigation of Additive Manufacturing operations. Based on these empirical results a general four component Industrial Additive Manufacturing System is developed, together with the identification of potential strategic opportunities to enhance future manufacturing.  相似文献   

14.
A knowledge-based approach to design for manufacturability   总被引:4,自引:1,他引:3  
In the light of growing global competition, organizations around the world today are constantly under pressure to produce high-quality products at an economical price. The integration of design and manufacturing activities into one common engineering effort has been recognized as a key strategy for survival and growth. Design for manufacturability (DFM) is an approach to design that fosters the simultaneous involvement of product design and process design. The implementation of the DFM approach requires the collaboration of both the design and manufacturing functions within an organization. Many reasons can be cited for the inability to implement the DFM approach effectively, including: lack of interdisciplinary expertise of designers; inflexibility in organizational structure, which hinders interaction between design and manufacturing functions; lack of manufacturing cost information at the design phase; and absence of integrated engineering effort intended to maximize functional and manufacturability objectives. The purpose of this research is to show how expert systems methodology could be used to provide manufacturability expertise during the design phase of a product. An object- and rule-based expert system has been developed that has the capability: (1) to make process selection decisions based on a set of design and production parameters to achieve cost-effective manufacture; and (2) to estimate manufacturing cost based on the identified processes. The expertise for primary process selection is developed for casting and forging processes. The specialized processes considered are die casting, investment casting, sand casting, precision forging, open die forging and conventional die forging. The processes considered for secondary process selection are end milling and drilling. The cost estimation expertise is developed for the die casting process, the milling and drilling operations, and the manual assembly operations. The results obtained from the application of the expert system suggest that the use of expert systems methodology is a feasible method for implementing the DFM approach.  相似文献   

15.
Numerous companies in manufacturing industries have “servitized” their value propositions to address issues on product commoditization and sustainability. A key component of servitization is informatics, which transforms product and customer data into information for customers. In this study, informatics-based service is defined as a type of service wherein informatics is crucial to customer value creation. Despite the importance of this concept, studies on the design of informatics-based services in manufacturing industries are rare. This paper reports on two case studies on such designs. Informatics-based services have been designed for a major Korean automobile manufacturer and the Korea Transportation Safety Authority (TS) based on their large vehicle-related databases. The first case study with the automobile manufacturer aims to design vehicle operations and health management services for passenger vehicle drivers while the second study with TS focuses on the design of driving safety enhancement services for commercial vehicle (i.e., bus, taxi, and truck) drivers. Based on the case studies, this paper discusses various aspects of informatics-based service design in manufacturing industries. This study would assist researchers and practitioners in designing new informatics-based services and contribute to promoting and inspiring research on intelligent services in manufacturing industries under the current information economy.  相似文献   

16.
《Ergonomics》2012,55(4):614-637
A theoretical interdisciplinary model that gives consideration to the critical human and organizational variables for success in concurrent engineering has been developed and validated based on the data derived from 103 electronic component manufacturing companies in the USA. The aim of the model is to determine the impact of organizational ergonomics on work effectiveness in concurrent engineering. A set of questionnaires was developed and data were collected from the manager of the concurrent engineering effort, the team leader and design, manufacturing and marketing team members. The study supports the proposed model and shows that a reward structure that reflects the team effort and quality of communication are significantly related to concurrent engineering performance. This implies that companies using team work structures should find ways to facilitate effective communication among team members and have a reward structure that is balanced to recognize the success of the team.  相似文献   

17.
The philosophy of group technology (GT) is an important concept in the design of flexible manufacturing systems and manufacturing cells. Group technology is a manufacturing philosophy that identifies similar parts and groups them into families. Beside assigning unique codes to these parts, group technology developers intend to take advantage of part similarities during design and manufacturing processes. GT is not the answer to all manufacturing problems, but it is a good management technique with which to standardize efforts and eliminate duplication. Group technology classifies parts by assigning them to different families based on their similarities in: (1) design attributes (physical shape and size), and/or (2) manufacturing attributes (processing sequence). The manufacturing industry today is process focused; departments and sub units are no longer independent but are interdependent. If the product development process is to be optimized, engineering and manufacturing cannot remain independent any more: they must be coordinated. Each sub-system is a critical component within an integrated manufacturing framework. The coding and classification system is the basis of CAPP and the functioning and reliability of CAPP depends on the robustness of the coding system. The proposed coding system is considered superior to the previously proposed coding systems, in that it has the capability to migrate into multiple manufacturing environments. This article presents the design of a coding and classification system and the supporting database for manufacturing processes based on both design and manufacturing attributes of parts. An interface with the spreadsheet will calculate the machine operation costs for various processes. This menu-driven interactive package is implemented using dBASE-IV. Part Family formation is achieved using a KAMCELL package developed in TURBO Pascal.  相似文献   

18.
We applied human-centered design methodologies to enhance the presentation of product quality information to operators on a manufacturing plant floor. First, an initial visual display concept that integrated a pictorial representation of a product with standard graphical and tabular information about the product's quality was refined through iterative design and testing. A preliminary study was then conducted to determine the specific features of such a display (termed a pictorial control chart) from among eight candidate detail designs. Finally, a formal study was conducted to compare the performance of operators using this refined pictorial control chart design with their performance using a conventional control chart. Operators completed a quality control task in significantly less time using the pictorial control chart. There were no significant differences in the number of errors committed with the two charts. Subjective measures showed a significant preference for the pictorial control chart. Actual or potential applications of this research include the development of quality control tools that are useful to and usable by operators on the manufacturing plant floor.  相似文献   

19.
Original equipment suppliers (OES) that develop unique products are continuously faced with changing requirements during both the quotation and product development processes. This challenge is a different reality from companies that develop off-the-shelf products for the end consumer, which use fixed specifications and where product platforms have been a strong enabler for efficient mass customization. However, product platforms cannot adequately support companies working as OES. The reason is that a high level of customization is required which means that interfaces cannot be standardized, the performance is not negotiable, requirements are not initially fixed, and the specific system interacts with, is affected by, or affects other systems that are simultaneously developed in a transdisciplinary environment. The design platform (DP) approach provides a coherent environment for heterogeneous and transdisciplinary design resources to be used in product development by supporting both designing and off-the-shelf solutions. This research describes the introduction, application and further development of the DP approach at an automotive supplier to support the development of customized solutions when traditional modularity or platform scalability do not suffice. A computer tool called Design Platform Manager has been developed to support the creation and visualization of the DP. The support tool has a connection to a product data management database to link the platform model to the various kinds of engineering assets needed or intended to support variant creation. Finally, the support tool was evaluated by the case company representatives showing promising results.  相似文献   

20.
Traditional engineering design and manufacturing systems function as an arrangement of individual engineering activities with predefined rigid interfaces. In contrast, agile design and manufacturing engineering strategies require flexible processes that can be adapted rapidly for fast response to dynamic market demands without compromising the cost and quality of the product. In an attempt to address this deficiency of traditional systems, this paper proposes and explores a novel model of product lifecycle management (PLM) in which instead of studying engineering activities exclusively with respect to a temporal variable, the processes are deliberately managed to form closed loops of two or more activities with respect to two independent dimensions: time and rigidity. The model is referred to as closed-loop engineering (CLE). The CLE model eliminates the need to specify solid interfaces between the engineering activities. Instead, flexible interfaces are generated by real-time analysis of respective actions and the reactions between them. In order to study the performance and efficiency of CLE, case studies in three different levels of sub-activity, inter-activity and infra-activity loops in the fields of design, manufacturing and inspection are presented. The implementation results revealed that individual closed loops of different engineering activities in the product development process can significantly enhance the quality of the final products. Also, the flexibility of the interfaces between the activities results in adaptable production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号