首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
赵晓丽  宫华  车平 《自动化学报》2020,46(1):168-177
研究了两个工件集合竞争在一台批处理机上加工的调度问题,其中每个集合的工件具有一个共同的释放时间.批处理机可以同时加工多个工件作为一批,每批的加工时间为该批工件中加工时间的最大值.基于两类释放时间的大小,针对无界批处理机上最小化一个集合工件的最大完工时间、最大延迟以及总完工时间,使得另一个集合工件的最大完工时间不超过给定上界问题,分别给出了最优求解方法.针对有界批处理机上最小化一个集合工件的最大完工时间,使得另一个集合工件的最大完工时间不超过给定上界问题,证明为一般意义NP-难问题,并给出伪多项式时间最优求解方法.  相似文献   

2.
A batch processing machine can simultaneously process several jobs forming a batch. This paper considers the problem of scheduling jobs with non-identical capacity requirements, on a single-batch processing machine of a given capacity, to minimize the makespan. The processing time of a batch is equal to the largest processing time of any job in the batch. We present some dominance properties for a general enumeration scheme and for the makespan criterion, and provide a branch and bound method. For large-scale problems, we use this enumeration scheme as a heuristic method.Scope and purposeUsually in classical scheduling problems, a machine can perform only one job at a time. Although, one can find machines that can process several jobs simultaneously as a batch. All jobs of a same batch have common starting and ending times. Batch processing machines are encountered in many different environments, such as burn-in operations in semiconductor industries or heat treatment operations in metalworking industries. In the first case, the capacity of the machine is defined by the number of jobs it can hold. In the second case, each job has a certain capacity requirement and the total size of a batch cannot exceed the capacity of the machine. Hence, the number of jobs contained in each batch may be different. In this paper, we consider this second case (which is more difficult) and we provide an exact method for the makespan criterion (minimizing the last ending time).  相似文献   

3.
We consider a scheduling problem in which two agents, each with a set of non-preemptive jobs, compete to perform their jobs on a common bounded parallel-batching machine. Each of the agents wants to minimize an objective function that depends on the completion times of its own jobs. The goal is to schedule the jobs such that the overall schedule performs well with respect to the objective functions of both agents. We focus on minimizing the makespan or the total completion time of one agent, subject to an upper bound on the makespan of the other agent. We distinguish two categories of batch processing according to the compatibility of the agents. In the case where the agents are incompatible, their jobs cannot be processed in the same batch, whereas all the jobs can be processed in the same batch when the agents are compatible. We show that the makespan problem can be solved in polynomial time for the incompatible case and is NP-hard in the ordinary sense for the compatible case. Furthermore, we show that the latter admits a fully polynomial-time approximation scheme. We prove that the total completion time problem is NP-hard and is polynomially solvable for the incompatible case with a fixed number of job types.  相似文献   

4.
基于到达时间两台并行机上在线批调度   总被引:1,自引:0,他引:1  
考虑两台同构并行机上在线批调度问题.每个批具有不确定的到达时间,一旦机器可以利用,要在当前可以利用的批中选择出合适的批,并将其中的工件调度到机器上,且工件在加工过程中不允许中断.目标函数是使调度的最大完成时间最小.给出了一个批在线调度RBLPT算法,即选择当前批中加工时间之和最大的批按LPT 规则调度.另外,利用反证法,对算法的最坏情况进行了分析.  相似文献   

5.
This paper studies a bicriteria scheduling problem on a series-batching machine with objective of minimizing makespan and total completion time simultaneously. A series-batching machine is a machine that can handle up to b jobs in a batch and the completion time of all jobs in a batch is equal to the finishing time of the last job in the batch and the processing time of a batch is the sum of the processing times of jobs in the batch. In addition, there is a constant setup time s for each batch. For the problem we can find all Pareto optimal solutions in O(n2) time by a dynamic programming algorithm, where n denotes the number of jobs.  相似文献   

6.
Scheduling jobs under decreasing linear deterioration   总被引:1,自引:0,他引:1  
This paper considers the scheduling problems under decreasing linear deterioration. Deterioration of a job means that its processing time is a function of its execution start time. Optimal algorithms are presented respectively for single machine scheduling of minimizing the makespan, maximum lateness, maximum cost and number of late jobs. For two-machine flow shop scheduling problem to minimize the makespan, it is proved that the optimal schedule can be obtained by Johnson's rule. If the processing times of operations are equal for each job, flow shop scheduling problems can be transformed into single machine scheduling problems.  相似文献   

7.
This paper addresses the problem of scheduling jobs with non-identical sizes on a single batch processing machine. A batch processing machine is one which can process multiple jobs simultaneously as a batch as long as the total size of jobs being processed does not exceed the machine capacity. The batch processing time is equal to the longest processing time among all jobs in the batch. For the simultaneous minimization of the bi-criteria of makespan and maximum tardiness, we propose two different multi-objective genetic algorithms based on different representation schemes. While the first algorithm do search via generating sequences of jobs using genetic operators and then batching jobs keeping their order in the sequence, the second algorithm uses the idea of generating batches of jobs directly using genetic operators and ensures feasibility through using heuristic procedures. The type of representation used in the second algorithm allows introducing heuristics with the ability of biasing the search towards each objective and also allows hybridization with a local search heuristic that gives the ability of finding Pareto-optimal or locally efficient Pareto-solutions. Computational results show that the non-dominated solutions obtained by the latter algorithm are very superior in closeness to the true Pareto-optimal solutions and to keep diversity in the obtained Pareto-set, as the problem size increases.  相似文献   

8.
We consider the scheduling problems arising when two agents, each with a family of jobs, compete to perform their respective jobs on a common unbounded parallel-batching machine. The batching machine can process any number of jobs simultaneously in a batch. The processing time of a batch is equal to the maximum processing time of the jobs in the batch. Two main categories of batch processing based on the compatibility of job families or agents are distinguished. In the case where job families are incompatible, jobs from different families cannot be placed in the same processing batch while all jobs can be placed in the same processing batch when job families are compatible. The goal is to find a schedule for all jobs of the two agents that minimizes the objective of one agent while keeping the objective of the other agent below or at a fixed value Q. Polynomial-time and pseudo-polynomial-time algorithms are provided to solve various combinations of regular objective functions for the scenario in which job families are either incompatible or compatible.  相似文献   

9.
We consider various single machine scheduling problems in which the processing time of a job depends either on its position in a processing sequence or on its start time. We focus on problems of minimizing the makespan or the sum of (weighted) completion times of the jobs. In many situations we show that the objective function is priority-generating, and therefore the corresponding scheduling problem under series-parallel precedence constraints is polynomially solvable. In other situations we provide counter-examples that show that the objective function is not priority-generating.  相似文献   

10.
This paper is a note on “minimizing makespan in three machine flow shop with deteriorating jobs” [J.-B. Wang, M.-Z. Wang, minimizing makespan in three machine flow shop with deteriorating jobs, Computers & Operation Research 40 (2013) 547–557]. Wang and Wang presented a branch-and-bound algorithm with several dominance properties and a lower bound; however, we think that the dominance properties may not be true as they are neither necessary nor sufficient. We first show by means of a counter-example that the published dominance properties are incorrect, and then present a necessary and sufficient condition for them to be true. Moreover, a simplifying remark is provided for the above dominance properties.  相似文献   

11.
In this article, the job shop scheduling problem with two batch-processing machines is considered. The machines have limited capacity and the jobs have non-identical job sizes. The jobs are processed in batches and the total size of each batch cannot exceed the machine capacity. The processing times of a job on the two machines are proportional. We show the problem of minimising makespan is NP-hard in the strong sense. Then we provide an approximation algorithm with worst-case ratio no more than 4, and the running time of the algorithm is O(n?log?n). Finally, the performance of the proposed algorithm is tested by different levels of instances. Computational results demonstrate the effectiveness of the algorithm for all the instances.  相似文献   

12.
In this paper, we consider the problem of scheduling a set of jobs on a set of identical parallel machines. Before the processing of a job can start, a setup is required which has to be performed by a given set of servers. We consider the complexity of such problems for the minimization of the makespan. For the problem with equal processing times and equal setup times we give a polynomial algorithm. For the problem with unit setup times, m machines and m − 1 servers, we give a pseudopolynomial algorithm. However, the problem with fixed number of machines and servers in the case of minimizing maximum lateness is proven to be unary NP-hard. In addition, recent algorithms for some parallel machine scheduling problems with constant precessing times are generalized to the corresponding server problems for the case of constant setup times. Moreover, we perform a worst case analysis of two list scheduling algorithms for makespan minimization.  相似文献   

13.
On-line scheduling problems are studied with jobs organized in a number of sequences called threads. Each job becomes available as soon as a scheduling decision is made on all preceding jobs in the same thread.We consider two different on-line paradigms. The first one models a sort of batch process: a schedule is constructed, in an on-line way, which is to be executed later. The other one models a real-time planning situation: jobs are immediately executed at the moment they are assigned to a machine.The classical objective functions of minimizing makespan and minimizing average completion time of the jobs are studied.We establish a fairly complete set of results for these problems. One of the highlights is that List Scheduling is a best possible algorithm for the makespan problem under the real-time model if the number of machines does not exceed the number of threads by more than 1. Another one is a polynomial time best possible algorithm for minimizing the average completion time on a single machine under both on-line paradigms.  相似文献   

14.
Motivated by applications in iron and steel industry, we consider a two-stage flow shop scheduling problem where the first machine is a batching machine subject to the blocking constraint and the second machine is a discrete machine with shared setup times. We show that the problem is strongly NP-hard when the objective is to minimize the makespan. When solved with a heuristic priority rule, the worst case ratio with the minimum makespan is 2. For a more general objective, the minimization of a linear combination of the makespan and the total blocking time, a quadratic mixed integer program is presented first. Then we pinpoint two cases with polynomial time algorithms: the case without blocking constraint and the case with a given job sequence. Also for the general objective, we analyze an approximation algorithm. Finally, we evaluate the algorithms, giving experimental results on randomly generated test problems.  相似文献   

15.
We study machine scheduling problems in which the jobs belong to different job classes and they need to be delivered to customers after processing. A setup time is required for a job if it is the first job to be processed on a machine or its processing on a machine follows a job that belongs to another class. Processed jobs are delivered in batches to their respective customers. The batch size is limited by the capacity of the delivery vehicles and each shipment incurs a transport cost and takes a fixed amount of time. The objective is to minimize the weighted sum of the last arrival time of jobs to customers and the delivery (transportation) cost. For the problem of processing jobs on a single machine and delivering them to multiple customers, we develop a dynamic programming algorithm to solve the problem optimally. For the problem of processing jobs on parallel machines and delivering them to a single customer, we propose a heuristic and analyze its performance bound.  相似文献   

16.
This paper addresses the problem of minimizing the scheduling length (make-span) of a batch of jobs with different arrival times. A job is described by a direct acyclic graph (DAG) of parallel tasks. The paper proposes a dynamic scheduling method that adapts the schedule when new jobs are submitted and that may change the processors assigned to a job during its execution. The scheduling method is divided into a scheduling strategy and a scheduling algorithm. We also propose an adaptation of the Heterogeneous Earliest-Finish-Time (HEFT) algorithm, called here P-HEFT, to handle parallel tasks in heterogeneous clusters with good efficiency without compromising the makespan. The results of a comparison of this algorithm with another DAG scheduler using a simulation of several machine configurations and job types shows that P-HEFT gives a shorter makespan for a single DAG but scores worse for multiple DAGs. Finally, the results of the dynamic scheduling of a batch of jobs using the proposed scheduler method showed significant improvements for more heavily loaded machines when compared to the alternative resource reservation approach.  相似文献   

17.
We consider the identical parallel machine problem with makespan minimization subject to minimum total flowtime. First, we develop an optimal algorithm to the identical parallel machine problem with the objective of minimizing makespan. To improve the computational efficiency, two implementation techniques, the lower bound calculation and the job replacement rule, are applied. Based on the algorithm, an optimal algorithm, using new lower bounds, to the considered problem is developed. The result of this study can also be used to solve the bicriteria problem of minimizing the weighted sum of makespan and mean flowtime. Computational experiments are conducted up to six machines and 1000 jobs. Although the proposed algorithm has an exponential time complexity, the computational results show that it is efficient to find the optimal solution.  相似文献   

18.
This paper investigates a difficult scheduling problem on a specialized two-stage hybrid flow shop with multiple processors that appears in semiconductor manufacturing industry, where the first and second stages process serial jobs and parallel batches, respectively. The objective is to seek job-machine, job-batch, and batch-machine assignments such that makespan is minimized, while considering parallel batch, release time, and machine eligibility constraints. We first propose a mixed integer programming (MIP) formulation for this problem, then gives a heuristic approach for solving larger problems. In order to handle real world large-scale scheduling problems, we propose an efficient dispatching rule called BFIFO that assigns jobs or batches to machines based on first-in-first-out principle, and then give several reoptimization techniques using MIP and local search heuristics involving interchange, translocation and transposition among assigned jobs. Computational experiments indicate our proposed re-optimization techniques are efficient. In particular, our approaches can produce good solutions for scheduling up to 160 jobs on 40 machines at both stages within 10?min.  相似文献   

19.
We study a single machine scheduling problem, where the machine is unavailable for processing for a pre-specified time period. We assume that job processing times are position-dependent. The objective functions considered are minimum makespan, minimum total completion time and minimum number of tardy jobs. All these problems are known to be NP-hard even without position-dependent processing times. For all three cases we introduce simple heuristics which are based on solving the classical assignment problem. Lower bounds, worst case analysis and asymptotic optimality are discussed. All heuristics are shown numerically to perform extremely well.  相似文献   

20.
Minimizing Mean Completion Time in a Batch Processing System   总被引:8,自引:0,他引:8  
We consider batch processing jobs to minimize the mean completion time. A batch processing machine can handle up to $B$ jobs simultaneously. Each job is represented by an arrival time and a processing time. Jobs processed in a batch have the same completion time, i.e., their common starting time plus the processing time of their longest job. For batch processing, non-preemptive scheduling is usually required and we discuss this case. The batch processing problem reduces to the ordinary uniprocessor system scheduling problem if $B=1$. We focus on the other extreme case $B=+\infty$. Even for this seemingly simple extreme case, we are able to show that the problem is NP-hard for the weighted version. In addition, we establish a polynomial time algorithm for a special case when there are only a constant number of job processing times. Finally, we give a polynomial time approximation scheme for the general case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号