共查询到19条相似文献,搜索用时 78 毫秒
1.
针对不同信噪比噪声干扰下的轴承故障诊断问题,文中建立了一种基于一维宽卷积核卷积神经网络和双向长短记忆神经网络的轴承故障诊断模型.向该模型输入轴承振动信号,通过短时傅里叶变换将振动信号转化为时频图.然后利用首层为宽卷积核的卷积神经网络和长短记忆神经网络分别提取其空间与时间特征,并结合全连接层实现分类.为增强抗噪性,模型采... 相似文献
2.
本文提出一个基于卷积注意力机制的文本分类方法,该方法利用卷积神经网络抓取上下文信息,自适应生成注意力权重,并与LSTM模型相融合进行分类。在IMDB影评分类测试中,本文所提方法的分类准确率比基准模型高3.6%,证明了本文所提方法的有效性。 相似文献
3.
针对当前的在线协作讨论交互文本分类仅采用深度学习方法时,存在无法充分获取上下文语义关联以及忽略关键特征词,造成分类结果准确率下降的问题,文中提出一种结合注意力机制的深度学习网络模型—CNNBiLSTM-Attention,进一步强化文本的语义特征。利用该模型对在线协作讨论活动中产生的12000条交互文本进行分类,分类结果表明,CNN-BiLSTM-Attention的分类准确率整体上可达到82.40%,有效提升了文本分类的效果。 相似文献
4.
针对轴承故障诊断模型输入信息单一,且变负载、噪声工况下诊断精度受限的问题,提出一种多尺度卷积神经网络结合自注意力特征融合机制(SA-MCNN)的故障诊断方法。该方法首先使用不同核大小的卷积层并行提取振动信号的多尺度信息后,采用自注意力特征融合机制,为并行的多尺度特征加权融合;最后根据融合后的特征,区分轴承的健康状态。实验结果表明,与其它故障诊断模型相比,SA-MCNN模型能够根据多尺度信息有效捕捉高质量的状态特征,在跨负载工况和噪声工况下表现出强鲁棒性。 相似文献
5.
针对传统轴承故障诊断依赖专家经验且存在时频特征提取效果不佳,导致故障诊断效率和精度较低的问题,提出一种基于同步压缩小波变换(SWT)与改进卷积神经网络(CNN)的轴承故障诊断模型(SICNN)。首先,将一维的非平稳轴承振动信号通过SWT转换为高频率表达的二维时频图像,作为卷积神经网络的输入;然后,引入SRM对提取的特征进行风格池化与融合,调整卷积通道合适的特征权重,提高重要特征的关注度进而提高网络的表征能力;最后,通过Softmax层输出故障诊断结果。为了验证所提出的模型性能,使用凯斯西储大学采集的轴承数据集开展实验。结果表明,该模型故障诊断准确率可达到99.88%,与其他传统方法相比,具有良好的可行性和收敛性能,实践层面应用价值较高。 相似文献
6.
图像语义描述模型通常采用编码器-解码器方式实现图像语义描述,模型存在对图像特征利用不充分,图像目标的位置信息提取不足等问题.针对此问题,提出在编码器部分融合注意力机制的图像语义描述算法,通过解码器上下文信息对不同图像特征的注意力权重分配,从而提高图像语义描述的表达能力.并在Flickr30k和MSCOCO数据集上进行了... 相似文献
7.
针对传统方法在机械故障诊断时存在特征提取困难、分类器训练复杂等问题,提出了一种基于S变换和卷积神经网络(CNN)的滚动轴承故障诊断方法.首先,将轴承的原始数据经过S变换得到时频图,再通过CNN进行二次特征提取.然后,通过分类器对故障进行分类,并对滚动轴承进行故障诊断.实验结果表明,相比长短时记忆网络、CNN和支持向量机... 相似文献
8.
微表情是一种极为短暂的面部表情,当人们想要掩饰内心的真实情感时,就会不自觉的流露出来。由于微表情的持续时间短,动作幅度小等特点,检测和识别微表情就变得尤为困难。为了解决传统图像识别的方法的识别率低和预处理复杂等缺点,本文提出了采用深度神经网络的方法来对微表情进行识别。该深度神经网络由卷积神经网络(CNN)和长短时记忆型(LSTM)递归神经网络组合而成,CNN层负责提取微表情的静态图像特征,LSTM层将提取到的卷积特征进行整合,而得到这些特征在时域上的信息,进而对这些信息进行分类训练。在CASM2数据集下,该方法对5类表情的识别率比传统方法高。 相似文献
9.
轴承作为用途最为广泛的零部件之一,其可以有效减缓旋转部件之间的摩擦力从而避免损坏,并且可以固定旋转轴。然而,在恶劣条件下连续工作会导致不可避免的故障。因此,对于工厂来说,进行轴承故障类型以及故障程度诊断越来越有必要。近些年来,随着深度神经网络,特别是卷积神经网络(convolutional neural network,CNN)的出现,使得智能诊断方法在精度方面取得了显著的提升。然而,在复杂的实际工业场景下,除了准确性之外,效率问题也需要提起重视。针对目前的多数CNN网络或效率低或不能检测故障程度的问题,提出了一种基于一维卷积神经网络的多输出分类的方法。方法利用提取的相关特征同时进行轴承故障类型分类和故障程度(裂纹尺寸)分类,与传统的基于CNN的多类分类相比,在多输出分类中利用相关特征提高了诊断的准确性和效率。 相似文献
10.
燃气负荷预测对于燃气资源的优化调度至关重要.燃气负荷预测除了具有趋势性、周期性等时间特性外,相邻燃气调压站的负荷数据与温湿度数据之间也存在空间特性,导致燃气负荷预测机理建模困难且模型预测精度较低.针对以上问题,提出了一种基于自回归移动平均模型(ARIMA)与卷积长短时神经网络(ConvLSTM)结合的燃气负荷预测模型.... 相似文献
11.
针对滚动轴承故障征兆与故障模式映射的复杂性,以及BP网络容易陷入局部极小、收敛速度慢等缺点,提出了基于概率神经网络(PNN)的滚动轴承故障诊断方法。采用11个时域统计特征作为样本特征,利用PNN实现样本分类,并与反向传播(BP)网络进行滚动轴承故障诊断的方法进行了对比。结果表明,PNN网络可以实现滚动轴承不同类型的故障识别,其分类结果比BP网络具有更高的准确性,并在避免局部极小和节约训练时间方面有较好的实用性。 相似文献
12.
为提高滚动轴承故障诊断分类器的训练正确率,以及缩短训练时间,根据其训练集即含有标签样本,也含有无标签样本的特点,将LS_SVM与半监督学习相结合,充分利用训练集中的有效信息,给出一种基于SLS_SVM的滚动轴承故障诊断方法。将该方法与标准SVM和半监督学习SVM方法相比,其不但能提高训练正确率,也能缩短训练所需时间。通过诊断试验,验证了该算法的有效性以及高效性。 相似文献
13.
滚动轴承振动信号是非线性、非平稳信号,如何对复杂的非周期滚动轴承数据进行准确特征提取十分具有挑战性.本文提出一种基于局部频谱的轴承数据特征提取方法.该方法将预处理得到的分割点与频谱分析结合起来,构建了数据的局部化特征,确定了局部频率的定义以及时频域的构造方法,并对局部频谱进行特征提取.实验表明,该方法克服了希尔伯特变换仅适合描述窄带信号的局限性,并弥补傅里叶全局频率只对无限波动周期信号才具有明显价值的缺陷.减少虚假频率产生的同时,兼容了时域和频域的分析能力,为非线性非平稳滚动轴承时域数据的特征提取提供了一种新方法,在滚动轴承故障诊断方面有很高的实用价值. 相似文献
14.
经验小波变换是最近提出的非平稳信号分析方法,针对其不足,提出了一种改进的经验小波变换方法;同时结合瞬时频率新定义,提出了一种非平稳信号时频分析新方法.该方法首先通过改进的经验小波变换将一个复杂的非平稳信号自适应地分解为若干个具有紧支集频谱的内禀模态函数之和;再通过对每个内禀模态函数进行解调,得到原始信号的时频分布.将提出的方法应用于滚动轴承试验数据分析,并将其与希尔伯特黄变换进行了对比,结果表明,论文提出的方法能够有效地诊断滚动轴承故障,且诊断效果优于希尔伯特黄变换方法. 相似文献
15.
设计了基于DSP的轴承故障诊断分析仪显示控制系统,给出了液晶显示模块与DSP的接口设计,解决了高速DSP与液晶模块之间时序不兼容的问题,用C语言编写了显示程序,实现了对液晶模块的显示控制. 相似文献
16.
针对复杂工况下滚动轴承故障信号盲提取问题,该文提出一种独立分量分析(ICA)中非线性函数自适应选择方法,解决了等变化自适应源分离算法(EASI)在多类振动源共存的情况下无法分离轴承故障信号的问题。此外,为了解决在线盲分离算法稳态误差与收敛速率的平衡问题,提出基于模糊逻辑的自适应迭代步长选择方法,极大地提高了学习算法的收敛速度,且稳态误差更小。轴承故障数据的盲提取仿真结果验证了算法的性能。 相似文献
17.
With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for comparison. And the proposed multiscale learning neural network demonstrates considerable improvements. 相似文献
18.
目前的轴承故障诊断中,较多的是对单传感器信号的处理,不能充分利用多传感器测量得到的大量有价值信息.针对这一问题,本文提出了一种信息融合模型.该模型通过设置不同传感器的权重值来融合多个传感器的信号,以达到充分利用传感器信息的目的.通过一个轴承故障诊断的例子,证实本模型具有实现简单、准确率高的优点,在轴承故障诊断中具有一定... 相似文献
19.
针对轴承振动信号在复杂机械中难采集和跨转速域工况下传统故障诊断方法精度低的问题,文中提出了一种基于Teager能量算子和卷积神经网络的滚动轴承声学故障诊断方法,即TEO-CNN。将轴承声学信号的Teager能量算子作为模型的输入,使用卷积神经网络学习输入的抽象特征,并结合全局平均池化层和全连接层实现轴承健康状态识别。模型验证基于轴承声学实验数据,并通过构建不同的轴承声学数据集模拟跨转速域工况。试验结果表明,与传统卷积神经网络和机器学习模型相比,TEO-CNN表现出明显的优势,并且在跨转速域工况下的预测精度始终高于95%。 相似文献
|