首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
目的研制高性能快干型高固体分环氧防腐底漆。方法将低黏度高活性环氧树脂和普通环氧树脂进行复配,得到可用于高固含涂料的树脂基料;通过分子结构优化设计,合成制备了以酚醛胺改性聚酰胺树脂为主体并结合柔性长链改性胺树脂复配的固化剂体系;利用复配的环氧树脂基料、自制的固化剂体系和无铬防锈颜料等组分研制了快干型高固体分环氧底漆。根据国家标准,进行了力学性能(包括柔韧性、耐冲击性和附着力)、耐环境性能(包括耐湿热、耐盐雾性能)和耐液体介质等涂层性能测试;通过考核涂层耐丁酮擦拭100次是否露底,来表征涂层的固化,采用FTIR手段,动态跟踪环氧固化过程。结果新研制的环氧涂料具有优良的力学性能和防腐性能,涂料的固含量73%,表干时间40 min,适用期8 h,耐盐雾和湿热均能达到5000 h,全面性能已达到国外现役先进材料水平,且工艺性能良好。结论以低黏度高活性环氧树脂为基体,采用酚醛与柔性长链二聚酸改性的聚酰胺固化剂,可制备高性能快干高固体分环氧防腐底漆,在飞机的防护底漆领域具有良好的应用前景。  相似文献   

2.
王廷河 《铸造技术》2014,(5):974-976
对不同固化剂制备的环氧富锌涂层分别进行了盐雾实验、浸泡实验和电化学阻抗实验,对涂层表面的组织形貌和电容、电阻进行了观察与测试。结果表明,由于含有抗腐蚀的苯环结构,2040固化剂制备的环氧富锌涂层的防腐蚀性能最好。  相似文献   

3.
苯胺三聚体固化环氧树脂制备防腐蚀涂层及其性能研究   总被引:2,自引:3,他引:2  
目的考查苯胺三聚体(AT)添加量对涂层防腐蚀性能的影响。方法自制苯胺三聚体,以苯胺三聚体和异佛尔酮二胺(IPD)为共固化剂,制备环氧涂层。对苯胺三聚体的化学结构进行表征,对涂层的表面微观形貌进行观察,通过电化学手段及盐雾实验评价涂层的防腐蚀效果。结果苯胺三聚体的加入使得环氧树脂涂层的防腐蚀性能有明显提升,并且苯胺三聚体的含量越高,涂层防腐蚀效果越好。对于不加传统固化剂的涂层,由于固化效果不佳,会导致防腐性能骤减。结论使用AT与IPD共固化环氧树脂涂层,当固化剂中AT的摩尔分数为80%时,涂层具有最佳的性能。  相似文献   

4.
针对锈蚀输电铁塔在防护过程中存在着除锈等级不高、涂层与基体表面附着力差的问题,开发了一种可用于锈蚀热镀锌钢表面的转化-稳定型低表面处理涂料,分析了各组分的作用,研究了磷酸锌、鳞片状锌粉、锈蚀转化剂用量及涂膜厚度对涂层性能的影响。对所制备的涂料进行实验室性能测试和户外应用试验,低表面处理涂料防腐蚀性能和施工性能均表现良好。  相似文献   

5.
金刚石薄膜与WC-Co硬质合金结合力的改善   总被引:1,自引:0,他引:1  
利用SEM,XRD研究了Murakami溶液和H2等离子体处理对硬质合金表面形貌、物相结构的影响,并对硬质合金工具进行了复合金刚石薄膜涂层,采用压痕法和实际钻削实验检测了金刚石薄膜/基体间的结合力.结果表明,微米/纳米复合金刚石薄膜涂层分布均匀,具有低的表面粗糙度,Murakami溶液处理硬质合金可产生均匀的表面沟槽,其金刚石薄膜与基体间的临界载荷约为1.5kN,而用该方法制备的涂层钻头加工性能很差,H2等离子体处理促进了硬质合金基体表面的WC晶粒更加粗大、致密,其临界载荷超过1.5kN,用该方法制备的涂层钻头的加工性能优良。  相似文献   

6.
氟碳涂层是性能优异的防腐蚀和防结垢材料。以氟乙烯-乙烯基醚聚合物(FEVE)树脂为基体,添加N-75固化剂等其它助剂,研制出一种双组分常温固化涂层。使用扫描电镜(SEM)对涂层表面形貌进行了表征,结果表明,当FEVE树脂用量为100 g,流平剂用量为1.2 g,消泡剂用量为0.8 g时,制备出的含氟涂层致密性好,孔隙少,综合性能最佳。将涂层应用于储罐,表现出了极好的耐腐蚀性能。  相似文献   

7.
以正硅酸乙脂为原料、盐酸为催化剂制备了用于耐高温封孔处理的SiO2溶胶,封孔处理后的涂层致密、表面光洁度好。对封孔前后涂层性能的测试表明:经过封孔后,大幅度提高涂层耐酸和耐高温性能,增强了涂层对基材的保护作用。  相似文献   

8.
以磷酸盐胶黏剂为成膜基料,MgO@SiO2为固化剂制备出一种低温固化无机磷酸盐防腐蚀涂料。以采用纳米颗粒表面包覆技术制备的MgO@SiO2作为固化剂,实现涂料固化过程中MgO的延缓释放,在有效延长涂料固化时间的同时降低了固化温度。利用TEM对MgO@SiO2包覆结构进行表征,借助XRD、SEM、IR、盐雾试验测试、色漆运动粘度测试等手段研究了涂层的物相组成、微观形貌、价键结构、耐盐雾性能和涂料的适用时间,并深入探究了其固化机理。结果表明,以MgO@SiO2作为无机磷酸盐涂料固化剂,涂料固化时间由十几秒延长至120min以上,完全固化温度降至80℃,最终所得涂层表面平整致密,具有较优异的耐吸湿性和防腐蚀性能。  相似文献   

9.
目的提高5182铝合金表面耐蚀性能及其与漆膜的结合力。方法采用KH550硅烷试剂在5182铝合金表面制备硅烷涂层,同时探究不同浸泡时间、溶液pH值和固化温度对硅烷涂层结构和性能的影响,并优化硅烷涂层的制备工艺。采用扫描电子显微技术(SEM)、接触角试验仪和拉曼光谱研究硅烷涂层的结构和成分。采用电化学阻抗谱(EIS)技术评价涂层的耐蚀性能。采用涂层附着力自动划痕仪评价硅烷涂层对有机漆膜结合力的影响。结果浸泡时间180 s、溶液pH值11、固化温度90℃为5182铝合金表面硅烷涂层的最佳制备工艺,该工艺条件下制备的硅烷涂层均匀、致密地覆盖于铝合金基体表面,厚度约为100 nm。在Na_2B_4O_7×10H_2O和NaOH水溶液中,硅烷处理试样的低频阻抗值比未硅烷处理试样高约2个数量级,硅烷处理样品与漆膜的结合力明显优于未经过硅烷处理的试样。结论采用优化工艺制备的硅烷涂层能改善5182铝合金的耐蚀性能。当硅烷涂层作为中间层存在时,显著提高了有机涂层与合金基体的结合强度。  相似文献   

10.
李磊  刘晓玲  曹磊  郭光福 《表面技术》2021,50(6):161-168
目的 将低表面能、仿生、纳米粒子防污技术相结合,制备出具有仿生协同效应的海洋防污涂层.方法 利用光刻法加工出带有负向形貌的硅板,以低表面能材料聚二甲基硅氧烷(PDMS)为基体,加入纳米ZnO、仿渗型防污剂苯基甲基硅油(PSO)以及固化剂、分散剂等助剂,经固化倒模,得到表面具有微米级织构的仿生协同效应的海洋防污涂层.通过扫描电子显微镜、X射线能谱仪分析观察涂层的表面形貌及元素分布.通过立体显微镜、红外分光测油仪观察并测定涂层中PSO的渗出速率.通过拉伸试验研究涂层的力学性能.通过接触角测试和硬度测试研究涂层的表观性能.通过抗菌实验研究涂层的防污性能.结果 涂层表面具有规则且完整的微米级织构,由于PSO和纳米ZnO的添加,涂层的疏水性能和力学性能显著提升,10%ZnO含量的涂层具有最佳的力学性能和防污剂释放速率.表面具有圆柱形织构的协同防污涂层的抗细菌粘附效果最好,其细菌粘附率减少了90%.结论 该仿生协同防污涂层相比单一原理防污涂层具有更为优异的防污效果,通过纳米ZnO的加入调控了防污剂PSO的渗出速率,延长了涂层的使用期效,且不会对环境产生污染,具有良好的发展前景.  相似文献   

11.
6061铝合金表面电弧喷涂纯铝涂层的研究   总被引:1,自引:0,他引:1  
采用电弧喷涂技术在6061铝合金基材表面制备纯铝涂层.利用金相显微镜、扫描电镜、X射线衍射仪对其显微组织结构、涂层形貌、腐蚀产物、孔隙率进行了分析.采用电化学试验、浸泡试验、中性盐雾试验检测了涂层在w(NaCl)=5%的溶液中的耐腐蚀性能.研究结果表明,在铝合金基材表面能够获得组织均匀致密,低孔隙率的纯铝涂层,涂层与基体为机械嵌合,涂层封孔处理后,试样的耐蚀性能有很大提高,涂层对基体无阴极保护作用.  相似文献   

12.
以喷砂和砂纸打磨2种方式对玻璃纤维增强复合材料进行表面预处理,利用火焰喷涂在处理过的试样表面上制备铝导电涂层,分析了表面预处理对导电涂层的表面形貌、结合强度、导电性能的影响.结果表明:采用喷砂和打磨制备的导电涂层的导电性都满足使用要求,影响铝导电层导电性的主要因素是导电层厚度,表面预处理方式对铝导电层导电性能影响不大,但对铝导电层结合强度的影响较大,喷砂处理制备的涂层比砂纸打磨处理的涂层结合强度高,因此更适宜采用喷砂的方法进行预处理.  相似文献   

13.
以正硅酸乙脂为原料、盐酸为催化剂制备了用于耐高温封孔处理的SiO2溶胶,封孔处理后的涂层致密、表面光洁度好。对封孔前后涂层性能的测试表明:经过封孔后,大幅度提高涂层耐酸和耐高温性能,增强了涂层对基材的保护作用。  相似文献   

14.
目的制备含环氧树脂微胶囊的二元自修复涂层,并对其力学性能和自修复性能进行研究。方法将自制环氧树脂E-51/三聚氰胺-脲醛树脂微胶囊和潜伏型固化剂(2-甲基咪唑)按一定比例添加到环氧树脂基体中,制备二元自修复环氧树脂涂层。利用漆膜弹性试验机、漆膜冲击试验机和万能拉伸试验机对涂层的弯曲性能、耐冲击性能和拉伸性能进行测试。利用扫描电子显微镜(SEM)、光学显微镜(OM)对涂层的自修复性能进行考察。采用EIS对涂层的电化学性能进行测试。结果成功制备了含环氧树脂微胶囊二元自修复涂层,当涂层中微胶囊的质量分数为3%时,涂层的冲击强度和拉伸强度分别提高了10.6%和14.6%。当涂层中2-甲基咪唑和微胶囊质量分数分别为6%和5%时,涂层的自修复性能较佳。当微胶囊质量分数为9%时,涂层的电化学阻抗值可达1.2×105?。结论微胶囊的加入可有效提高涂层的冲击强度和拉伸强度。随着涂层中潜伏型固化剂含量的增大,涂层的自修复性能增强。当潜伏型固化剂含量达到一定值时,涂层的自修复性能随着微胶囊含量的增大而增强。随着微胶囊含量的增加,涂层的电化学阻抗值增大。  相似文献   

15.
以硅粉为硅源,采用原位反应法在炭纤维表面制备了SiC涂层,并研究了反应压力对SiC涂层的制备、组织结构及抗氧化性能的影响。结果表明:常压下制备的涂层疏松多孔,表面有较多的SiC纳米线,而负压下制备的涂层致密均匀。静态氧化测试表明:与常压下制备的SiC涂层相比,负压下制备的SiC涂层抗氧化性能更好,主要是由于涂层致密均匀,能够更好地阻隔氧气的扩散。根据实验结果,探讨了反应压力对SiC涂层生长机理的影响。常压下,沉积粒子能量低,难以克服遮蔽效应,因此易形成疏松多孔的涂层;而负压下,沉积粒子能量高,表面扩散率高,易形成致密均匀的涂层。  相似文献   

16.
模拟酸雨环境下电力金属防腐蚀涂层的防护性能研究   总被引:1,自引:0,他引:1  
以环氧树脂为成膜物质,加入颜填料、纳米二氧化硅和聚硅氧烷偶联剂,制备了电力金属防腐蚀的纳米复合底漆。以现用底漆做对比,采用模拟酸雨实验、浸泡实验和电化学阻抗谱实验考察了两种涂层的耐腐蚀性能。结果表明,纳米复合底漆的耐腐蚀性能优于现用底漆,更加适合用作电力金属设施的防护涂层。  相似文献   

17.
环氧树脂水性化制备技术及防腐性能研究进展   总被引:1,自引:0,他引:1  
环氧树脂以其优异的性能而被广泛应用于工业生产的各个领域,但是随着各国纷纷限制甚至禁止挥发性有机物(VOC)的排放,发展水性环氧树脂成为大势所趋。水性环氧树脂最大的优点是VOC排放量低甚至为零,并且其耐腐蚀、耐盐雾、机械强度、电气绝缘等性能也非常出色,这对于水性环氧树脂在更严苛环境下的应用有着重要意义。系统地介绍了防腐环氧树脂水性化的主要方法。机械法制备工艺简单、成本低廉,是环氧树脂水性化较为普遍的一种方法;化学改性法可以获得均一、稳定的纳米级别的水性环氧树脂乳液;相反转法是一种获得具有高分子量水性环氧树脂乳液的有效方法;固化剂乳化法能够利用固化剂直接与环氧树脂发生反应制备水性环氧涂层。阐述了水性环氧树脂涂层的制备过程,并分析了实验条件对涂层防腐性能的影响规律,重点讨论了其研究现状和影响涂层性能的因素。通过对当前水性环氧树脂制备方法的总结和分析,展望了其今后的发展趋势。  相似文献   

18.
粉末预置法电火花沉积WC-8Co涂层分析   总被引:3,自引:1,他引:2       下载免费PDF全文
高玉新  赵程  易剑 《焊接学报》2012,33(3):49-52
针对传统电火花沉积技术存在电极制备工艺复杂、涂层存在较多裂纹及孔洞的不足,把WC-8Co粉末置于电极与基体之间的脉冲放电通道内,利用电火花沉积工艺制备了WC-8Co涂层.对比分析了新工艺与传统工艺制备的涂层表面形貌、显微组织及摩擦磨损性能.结果表明,用新工艺制备的涂层表面平整、粗糙度低、组织致密,与基体呈冶金结合.与传统工艺相比,新工艺制备的涂层有良好的耐磨粒磨损性能.用粉末预置法制备涂层能提高电火花沉积效率,适于制备大面积的涂层.  相似文献   

19.
在医用纯钛表面先采用阳极氧化法制备TiO2纳米管预涂层,然后通过AgNO3溶液浸泡和紫外光照射处理实现银颗粒在预涂层上的固定,再经过微弧氧化处理制备出载银多孔涂层。利用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线光电子能谱(XPS)对涂层表面形貌、载银量、银元素纵向分布及特征进行了表征,并通过金黄色葡萄球菌检验了涂层的抗菌性能。结果表明:两步电化学法可以在纯钛表面制备出含银量较高的多孔涂层,涂层中银元素大部分以纳米颗粒形式存在,涂层表面和最外层Ag元素主要以氧化物的形式存在,而沿涂层法向向内Ag单质与Ag氧化物共存,且涂层具有良好的抗菌性能。  相似文献   

20.
目的优化水性红外隐身涂层材料制备工艺,提高低发射率红外隐身涂料隐身性能。方法采用红外辐射率测量仪、红外光谱吸收仪等,研究涂层固化温度、涂层表面粗糙度和涂层厚度对低发射率红外隐身涂料隐身性能的影响。结果固化温度对涂层红外发射率和基体树脂红外吸收光谱影响不大,但随着固化温度升高,涂层固化时间明显缩短;随着涂层表面粗糙度的增加,涂层红外发射率增加;表面粗糙材料红外发射率受测试角度影响小于表面光滑材料;在基材上制备不同厚度的涂层,当涂层厚度小于30μm时,涂层红外发射率受基材表面红外发射率影响较大,当大于30μm时,影响较小。结论可以根据实际时间需求选择合适的涂层固化温度,宜选择刮涂方式使涂层表面保持一定的粗糙度,涂层厚度宜为30~40μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号