首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this paper, we discuss a scheduling problem for jobs on identical parallel machines. Ready times of the jobs, precedence constraints, and sequence-dependent setup times are considered. We are interested in minimizing the performance measure total weighted tardiness that is important for achieving good on-time delivery performance. Scheduling problems of this type appear as subproblems in decomposition approaches for large scale job shops with automated transport of the jobs as, for example, in semiconductor manufacturing. We suggest several variants of variable neighborhood search (VNS) schemes for this scheduling problem and compare their performance with the performance of a list based scheduling approach based on the Apparent Tardiness Cost with Setups and Ready Times (ATCSR) dispatching rule. Based on extensive computational experiments with randomly generated test instances we are able to show that the VNS approach clearly outperforms heuristics based on the ATCSR dispatching rule in many situations with respect to solution quality. When using the schedule obtained by ATCSR as an initial solution for VNS, then the entire scheme is also fast and can be used as a subproblem solution procedure for complex job shop decomposition approaches.  相似文献   

2.
In this paper, we study a planning and scheduling problem for unrelated parallel machines. There are n jobs that have to be assigned and sequenced on m unrelated parallel machines. Each job has a weight that represents the priority of the corresponding customer order, a given due date, and a release date. An Automated Guided Vehicle is used to transport at maximum Load max jobs into a storage space in front of the machines in a given period of time. We consider t max consecutive periods. We are interested in minimizing the total weighted tardiness of the jobs across the periods. This measure is important when we are interested in a good on-time delivery performance. We present an appropriate mixed integer program. To solve this NP-hard problem, we develop a heuristic methodology based on decomposition and variable neighborhood search (VNS). The proposed approaches are assessed using randomly generated problem instances. We compare them with a simple heuristic based on decomposition and list scheduling using the Apparent Tardiness Cost dispatching rule. The results demonstrate that the heuristic approach based on VNS performs comparably to the mixed integer program while having reasonable solution times and outperforms the simple heuristic and a genetic algorithm (GA) from previous research.  相似文献   

3.
车间作业调度问题是优化组合中一个著名的难题,问题的目标是在满足约束条件的前提下,使调度的加工周期尽可能小。文章中提出了利用新的混合邻域结构进行搜索来求解车间作业调度问题。对于算法关键的邻域构造问题以及跳坑策略给出了提高算法优度的解决方案。采用43个不同规模和难度的国际标准算例做为本算法的测试实验集,39个算例找到了最优解,其中包括著名的难例FT10。与当前国外学者提出的一种先进算法进行了比较,算法的优度高于被比较的先进算法。  相似文献   

4.
In this paper, we investigate the problem of minimizing makespan in a multistage hybrid flow-shop scheduling with multiprocessor tasks. To generate high-quality approximate solutions to this challenging NP-hard problem, we propose a discrepancy search heuristic that is based on the new concept of adjacent discrepancies. Moreover, we describe a new lower bound based on the concept of dual feasible functions. The proposed lower and upper bounds are assessed through computational experiments conducted on 300 benchmark instances with up to 100 jobs and 8 stages. For these instances, we provide evidence that the proposed bounds consistently outperform the best existing ones. In particular, the proposed heuristic successfully improved the best known solution of 75 benchmark instances.  相似文献   

5.
This paper introduces a tabu search heuristic for a production scheduling problem with sequence-dependent and time-dependent setup times on a single machine. The problem consists in scheduling a set of dependent jobs, where the transition between two jobs comprises an unrestricted setup that can be performed at any time, and a restricted setup that must be performed outside of a given time interval which repeats daily in the same position. The setup time between two jobs is thus a function of the completion time of the first job. The tabu search heuristic relies on shift and swap moves, and a surrogate objective function is used to speed-up the neighborhood evaluation. Computational experiments show that the proposed heuristic consistently finds better solutions in less computation time than a recent branch-and-cut algorithm. Furthermore, on instances where the branch-and-cut algorithm cannot find the optimal solution, the heuristic always identifies a better solution.  相似文献   

6.
This paper tackles the flexible job-shop scheduling problem with uncertain processing times. The uncertainty in processing times is represented by means of fuzzy numbers, hence the name fuzzy flexible job-shop scheduling. We propose an effective genetic algorithm hybridised with tabu search and heuristic seeding to minimise the total time needed to complete all jobs, known as makespan. To build a high-quality and diverse set of initial solutions we introduce a heuristic method which benefits from the flexible nature of the problem. This initial population will be the starting point for the genetic algorithm, which then applies tabu search to every generated chromosome. The tabu search algorithm relies on a neighbourhood structure that is proposed and analysed in this paper; in particular, some interesting properties are proved, such as feasibility and connectivity. Additionally, we incorporate a filtering mechanism to reduce the neighbourhood size and a method that allows to speed-up the evaluation of new chromosomes. To assess the performance of the resulting method and compare it with the state-of-the-art, we present an extensive computational study on a benchmark with 205 instances, considering both deterministic and fuzzy instances to enhance the significance of the study. The results of these experiments clearly show that not only does the hybrid algorithm benefit from the synergy among its components but it is also quite competitive with the state-of-the-art when solving both crisp and fuzzy instances, providing new best-known solutions for a number of these test instances.  相似文献   

7.
In this paper, we discuss a flexible flow shop scheduling problem with batch processing machines at each stage and with jobs that have unequal ready times. Scheduling problems of this type can be found in semiconductor wafer fabrication facilities (wafer fabs). We are interested in minimizing the total weighted tardiness of the jobs. We present a mixed integer programming formulation. The batch scheduling problem is NP-hard. Therefore, an iterative stage-based decomposition approach is proposed that is hybridized with neighborhood search techniques. The decomposition scheme provides internal due dates and ready times for the jobs on the first and second stage, respectively. Each of the resulting parallel machine batch scheduling problems is solved by variable neighborhood search in each iteration. Based on the schedules of the subproblems, the internal due dates and ready times are updated. We present the results of designed computational experiments that also consider the number of machines assigned to each stage as a design factor. It turns out that the proposed hybrid approach outperforms an iterative decomposition scheme where a fairly simple heuristic based on time window decomposition and the apparent tardiness cost dispatching rule is used to solve the subproblems. Recommendations for the design of the two stages with respect to the number of parallel machines on each stage are given.  相似文献   

8.
This paper investigates the hybrid flowshop scheduling with finite intermediate buffers, whose objective is to minimize the sum of weighted completion time of all jobs. Since this problem is very complex and has been proven strongly NP-hard, a tabu search heuristic is proposed. In this heuristic there are two main features. One is that a scatter search mechanism is incorporated to improve the diversity of the search procedure. And the other is that a permutation of N jobs representing their processing order in the first stage instead of a complex complete schedule is used to denote a solution. Computational experiments on randomly generated instances with different structures show that the proposed tabu search heuristic can provide good solutions compared to both the lower bounds and the algorithm proposed for this problem in a lately published literature.  相似文献   

9.
A vehicle scheduling problem (VSP) that arises from sugar beet transportation within minimum working time under the set of constraints reflecting a real‐life situation is considered. A mixed integer quadratically constrained programming (MIQCP) model of the considered VSP and reformulation to a mixed integer linear program (MILP) are proposed and used within the framework of Lingo 17 solver, producing optimal solutions only for small‐sized problem instances. Two variants of the variable neighborhood search (VNS) metaheuristic—basic VNS (BVNS) and skewed VNS (SVNS) are designed to efficiently deal with large‐sized problem instances. The proposed VNS approaches are evaluated and compared against Lingo 17 and each other on the set of real‐life and generated problem instances. Computational results show that both BVNS and SVNS reach all known optimal solutions on small‐sized instances and are comparable on medium‐ and large‐sized instances. In general, SVNS significantly outperforms BVNS in terms of running times.  相似文献   

10.
In this paper we study a due date setting problem in a flowshop layout. The problem consists of scheduling a set of jobs arriving to the system together with jobs already present (denoted as old jobs), in order to set a common due date for the new jobs. Since the old jobs have a common due date that must not be violated, our problem is a rescheduling problem with the objective of minimising the makespan of the new jobs (thus obtaining the tightest possible due date for the new jobs) and a constraint since the maximum tardiness of the old jobs must be equal to zero. This approach leads to an interesting scheduling problem in which two different objectives are considered, each one for a subset of the jobs that must be scheduled. To the best of our knowledge, this type of problems have been scarcely considered in the literature, and only for very specific purposes. Since our problem is clearly NP-hard, a new heuristic based on variable neighbourhood search (VNS) has been designed. The computational results show that our proposed heuristic outperforms two existing heuristic methods for similar problems in the literature.  相似文献   

11.
A tabu search algorithm for order acceptance and scheduling   总被引:1,自引:0,他引:1  
We consider a make-to-order production system, where limited production capacity and order delivery requirements necessitate selective acceptance of the orders. Since tardiness penalties cause loss of revenue, scheduling and order acceptance decisions must be taken jointly to maximize total revenue. We present a tabu search algorithm that solves the order acceptance and scheduling problem on a single machine with release dates and sequence dependent setup times. We analyze the performance of the tabu search algorithm on an extensive set of test instances with up to 100 orders and compare it with two heuristics from the literature. In the comparison, we report optimality gaps which are calculated with respect to bounds generated from a mixed integer programming formulation. The results show that the tabu search algorithm gives near optimal solutions that are significantly better compared to the solutions given by the two heuristics. Furthermore, the run time of the tabu search algorithm is very small, even for 100 orders. The success of the proposed heuristic largely depends on its capability to incorporate in its search acceptance and scheduling decisions simultaneously.  相似文献   

12.
In this paper, we address a parallel machine scheduling problem to minimize the total weighted completion time, where product families are involved. Major setups occur when processing jobs of different families, and sequence dependencies are also taken into account. Considering its high practical relevance, we focus on the special case where all jobs of the same family have identical processing times. In order to avoid redundant setups, batching jobs of the same family can be performed. We first develop a variable neighborhood search algorithm (VNS) to solve the interrelated subproblems in a simultaneous manner. To further reduce computing time, we also propose an iterative scheme which alternates between a specific heuristic to form batches and a VNS scheme to schedule entire batches. Computational experiments are conducted which confirm the benefits of batching. Test results also show that both simultaneous and iterative approach outperform heuristics based on a fixed batch size and list scheduling. Furthermore, the iterative procedure succeeds in balancing solution quality and computing time.  相似文献   

13.
This paper considers the problem of scheduling a set of jobs subject to arbitrary release dates and sequence-dependent setup times on a single machine with the objective of minimizing the maximum completion of all the jobs, or makespan. This problem is often found in manufacturing processes such as painting and metalworking. A new mixed integer linear program (MILP) is firstly proposed. Because the problem is known to be NP-hard, a beam search heuristic is developed. Computational experiments are carried out using a well-known set of instances from the literature. Our results show that the proposed heuristic is effective in finding high quality solutions at low computational cost.  相似文献   

14.
This article presents a new hybrid algorithm for combinatorial optimization that combines differential evolution (DE) with variable neighborhood search (VNS). DE (a population heuristic for optimization over continuous search spaces) is used as global optimizer for solution evolution guiding the search toward the optimal regions of the search space; VNS (a random local search heuristic based on the systematic change of neighborhood) is used as a local optimizer performing a sequence of local changes on individual DE solutions until a local optimum is found. The effectiveness of a DE-VNS approach is demonstrated on the solution of the single-machine total weighted tardiness scheduling problem. The concepts of Lamarckian and Baldwinian learning are also investigated and discussed. Experiments on known benchmark data sets show that DE-VNS with Lamarckian learning can produce high-quality schedules in a rather short computation time. DE-VNS uses a self-adapted mechanism for tuning the required control parameters, a critical feature rendering it applicable to real-life scheduling problems.  相似文献   

15.
Deteriorating jobs scheduling problems have been widely studied recently. However, research on scheduling problems with deteriorating jobs has rarely considered explicit setup times. With the current emphasis on customer service and meeting the promised delivery dates, we consider a single-machine scheduling problem to minimize the number of late jobs with deteriorating jobs and setup times in this paper. We derive some dominance properties, a lower bound, and an initial upper bound by using a heuristic algorithm to speed up the search process of the branch-and-bound algorithm. Computational experiments show that the algorithm can solve instances up to 1000 jobs in a reasonable amount of time.  相似文献   

16.
We propose a general-purpose heuristic approach combining metaheuristics and mixed integer programming to find high quality solutions to the challenging single- and parallel-machine capacitated lotsizing and scheduling problem with sequence-dependent setup times and costs. Commercial solvers fail to solve even medium-sized instances of this NP-hard problem; therefore, heuristics are required to find competitive solutions. We develop construction, improvement and search heuristics all based on MIP formulations. We then compare the performance of these heuristics with those of two metaheuristics and other MIP-based heuristics that have been proposed in the literature, and to a state-of-the-art commercial solver. A comprehensive set of computational experiments shows the effectiveness and efficiency of the main approach, a stochastic MIP-based local search heuristic, in solving medium to large size problems. Our solution procedures are quite flexible and may easily be adapted to cope with model extensions or to address different optimization problems that arise in practice.  相似文献   

17.
We consider the problem of scheduling a set of jobs on a set of identical parallel machines where the objective is to minimize the total weighted earliness and tardiness penalties with respect to a common due date. We propose a hybrid heuristic algorithm for constructing good solutions, combining priority rules for assigning jobs to machines and a local search with exact procedures for solving the one-machine subproblems. These solutions are then used in two metaheuristic frameworks, Path Relinking and Scatter Search, to obtain high quality solutions for the problem.The algorithms are tested on a large number of test instances to assess the efficiency of the proposed strategies.The results show that our algorithms consistently outperform the best reported results for this problem.  相似文献   

18.
This paper proposes a hybrid variable neighborhood search (HVNS) algorithm that combines the chemical-reaction optimization (CRO) and the estimation of distribution (EDA), for solving the hybrid flow shop (HFS) scheduling problems. The objective is to minimize the maximum completion time. In the proposed algorithm, a well-designed decoding mechanism is presented to schedule jobs with more flexibility. Meanwhile, considering the problem structure, eight neighborhood structures are developed. A kinetic energy sensitive neighborhood change approach is proposed to extract global information and avoid being stuck at the local optima. In addition, contrary to the fixed neighborhood set in traditional VNS, a dynamic neighborhood set update mechanism is utilized to exploit the potential search space. Finally, for the population of local optima solutions, an effective EDA-based global search approach is investigated to direct the search process to promising regions. The proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of experimental results, the high performance of the proposed HVNS algorithm is shown in comparison with four efficient algorithms from the literature.  相似文献   

19.
We develop an approach for implementing a real time admissible heuristic search algorithm for solving project scheduling problems with resource constraints. This algorithm is characterized by the complete heuristic learning process: state selection, heuristic learning, and search path review. The implementation approach is based on the network structure and the activity status of a project; which consists of definition of states, state transition operator, heuristic estimation, and state transition cost. The performance analysis with a benchmark problem shows that, the accumulation of heuristic learning during the search process leads to the re-scheduling of more promising activities, and finds an optimal schedule efficiently.  相似文献   

20.
We address the transporter scheduling and routing problem at a shipyard, which can be transformed into parallel machine scheduling with sequence-dependent setup times and precedence constraints. The objective is to maximize the workload balance among transporters under the time constraint that all assembly blocks should be transported in the predetermined period. We develop the GRASP algorithm for transporter scheduling and routing. Through simulation experiments we analyze some aspects of the developed GRASP algorithm and verify the performance of the developed GRASP algorithm. The comparison experiments show that the developed GRASP algorithm is a promising heuristic for transporter scheduling and routing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号