首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider resource allocation scheduling with learning effect in which the processing time of a job is a function of its position in a sequence and its resource allocation. The objective is to find the optimal sequence of jobs and the optimal resource allocation separately. We concentrate on two goals separately, namely, minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost; minimizing a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. We analyse the problem with two different processing time functions. For each combination of these, we provide a polynomial time algorithm to find the optimal job sequence and resource allocation.  相似文献   

2.
The focus of this paper is to analyze unrelated parallel-machine resource allocation scheduling problem with learning effect and deteriorating jobs. The goal is to find the optimal sequence of jobs and the optimal resource allocation separately for minimizing the cost function including the total load, the total completion time, the total absolute deviation of completion time and the total resource cost. We show that the problem is polynomial time solvable if the number of machines is a given constant.  相似文献   

3.
In many resource allocation problems in physical or economic systems, a linear resource consumption function is commonly considered, and job processing times are assumed to be fixed parameters. However, the former assumption fails to reflect the law of diminishing returns, and the latter may be controlled by changing the allocation of resources to jobs. Motivated by these observations, we provide a unified model for solving single-machine scheduling problems in which each job's processing time is a function of its starting time and convex resource allocation. The objective is to find the optimal sequence of jobs subject to a limited resource consumption. We first show how this unified model can be useful in solving scheduling problems under due date assignment considerations. We analyze the problem with four different due date assignment methods, and our objective function includes costs for earliness, tardiness and due date assignments. We also consider scheduling problems without involving due date assignment decisions. The objective function is to minimize the makespan, total completion time, total absolute variation in completion times, and total absolute variation in waiting times. We show that several existing well-known problems can be reduced to a special case of our unified model and solved in O(nlogn) time.  相似文献   

4.
This paper addresses single-machine scheduling problems under the consideration of learning effect and resource allocation in a group technology environment. In the proposed model of this paper the actual processing times of jobs depend on the job position, the group position, and the amount of resource allocated to them concurrently. Learning effect and two resource allocation functions are examined for minimizing the weighted sum of makespan and total resource cost, and the weighted sum of total completion time and total resource cost. We show that the problems for minimizing the weighted sum of makespan and total resource cost remain polynomially solvable. We also prove that the problems for minimizing the weighted sum of total completion time and total resource cost have polynomial solutions under certain conditions.  相似文献   

5.
Li  Lin  Wang  Jian-Jun 《Neural computing & applications》2018,29(11):1163-1170

This article considered the single machine scheduling with controllable processing time (resource allocation) and deterioration effect concurrently. It discussed the minimization of three objectives, which involve the weighted sum of the makespan and the total resource consumption cost, the total resource consumption cost under the condition that the makespan (total flow time) is restricted to a fixed constant and the optimal resource allocation and the optimal job sequence is what we need to make decision. Considering the makespan constraint, it proved that these problems can be solved in polynomial time. A special case of the last problem can be solved in polynomial time with respect to the total flow time constraint.

  相似文献   

6.
We investigate a single machine scheduling problem in which the processing time of a job is a linear function of its starting time and a variable maintenance on the machine must be performed prior to a given deadline. The goals are to minimize the makespan and the total completion time. We prove that both problems are NP-hard. Furthermore, we show that there exists a fully polynomial time approximation scheme for the makespan minimization problem. For the total completion time minimization problem we point out that there exists a fully polynomial time approximation scheme for a special case.  相似文献   

7.
We consider the three-stage assembly flowshop scheduling problem with the objective of minimizing the makespan. The three-stage assembly problem generalizes both the serial three machine flowshop problem and the two-stage assembly flowshop scheduling problem and is therefore strongly NP-hard. We analyze the worst-case ratio bound for several heuristics for this problem. We also analyze the worst-case absolute bound for a heuristic based on compact vector summation techniques and we point out that, for a large number of jobs, this heuristic becomes asymptotically optimal.Scope and purposeThe three-stage assembly flowshop scheduling problem models situations which arise frequently in manufacturing when various fabrication operations are performed concurrently and then collected and transported into an assembly area for a final assembly operation. The main criterion for this problem is the minimization of the maximum job completion time (makespan). The objective of this paper is to derive algorithms for minimizing the makespan. In doing so, we also demonstrate the reduction of assembly flowshop problems to their embedded serial flowshop problems.  相似文献   

8.
We consider a scheduling problem in which two agents, each with a set of non-preemptive jobs, compete to perform their jobs on a common bounded parallel-batching machine. Each of the agents wants to minimize an objective function that depends on the completion times of its own jobs. The goal is to schedule the jobs such that the overall schedule performs well with respect to the objective functions of both agents. We focus on minimizing the makespan or the total completion time of one agent, subject to an upper bound on the makespan of the other agent. We distinguish two categories of batch processing according to the compatibility of the agents. In the case where the agents are incompatible, their jobs cannot be processed in the same batch, whereas all the jobs can be processed in the same batch when the agents are compatible. We show that the makespan problem can be solved in polynomial time for the incompatible case and is NP-hard in the ordinary sense for the compatible case. Furthermore, we show that the latter admits a fully polynomial-time approximation scheme. We prove that the total completion time problem is NP-hard and is polynomially solvable for the incompatible case with a fixed number of job types.  相似文献   

9.
Motivated by applications in food processing and semiconductor manufacturing industries, we consider the scheduling problem of a batching machine with jobs of multiple families. The machine has a limited capacity to accommodate jobs. The jobs are in arbitrary sizes and multiple families. Jobs from different families cannot be processed in a batch. We show the problems of minimizing makespan and total batch completion time are both NP-hard in the strong sense. We present a mixed integer programming model for the problems. Then we propose two polynomial time heuristics based on longest processing time first rule and first fit rule. For the special case where a larger job also has a longer processing time, the heuristic for minimizing makespan is optimal. For the general case, we show the performance guarantee of the methods for the two objectives respectively.  相似文献   

10.
This paper presents a bicriterion analysis of time/cost trade-offs for the single-machine scheduling problem where both job processing times and release dates are controllable by the allocation of a continuously nonrenewable resource. Using the bicriterion approach, we distinguish between our sequencing criterion, namely the makespan, and the cost criterion, the total resource consumed, in order to construct an efficient time/cost frontier. Although the computational complexity of the problem of constructing this frontier remains an open question, we show that the optimal job sequence is independent of the total resource being used; thereby we were able to reduce the problem to a sequencing one. We suggest an exact dynamic programming algorithm for solving small to medium sizes of the problem, while for large-scale problems we present some heuristic algorithms that turned out to be very efficient. Five different special cases that are solvable by using polynomial time algorithms are also presented.  相似文献   

11.
In various industries jobs undergo a batching, or burn in, process where different tasks are grouped into batches and processed simultaneously. The processing time of each batch is equal to the longest processing time among all jobs contained in the batch. All to date studies dealing with batching machines have considered fixed job processing times. However, in many real life applications job processing times are controllable through the allocation of a limited resource. The most common and realistic model assumes that there exists a non-linear and convex relationship between the amount of resource allocated to a job and its processing time. The scheduler?s task when dealing with controllable processing times is twofold. In addition to solving the sequencing problem, one must establish an optimal resource allocation policy. We combine these two widespread models on a single machine setting, showing that both the makespan and total completion time criteria can be solved in polynomial time. We then show that our proposed approach can be applied to general bi-criteria objective comprising of the makespan and the total completion time.  相似文献   

12.
Extensive research has been devoted to preemptive scheduling. However, little attention has been paid to problems where a certain time penalty must be incurred if preemption is allowed. In this paper, we consider the single-machine scheduling problem of minimizing the total completion time subject to job release dates and preemption penalties, where each time a job is started, whether initially or after being preempted, a job-independent setup must take place. The problem is proved to be strongly NP-hard even if the setup time is one unit. We also study a natural extension of a greedy algorithm, which is optimal in the absence of preemption penalty. It is proved that the algorithm has a worst-case performance bound of 25/16, even when the maximum completion time, i.e., makespan, criterion is considered simultaneously.  相似文献   

13.
A no-wait job shop (NWJS) describes a situation where every job has its own processing sequence with the constraint that no waiting time is allowed between operations within any job. A NWJS problem with the objective of minimizing total completion time is a NP-hard problem and this paper proposes a hybrid genetic algorithm (HGA) to solve this complex problem. A genetic operation is defined by cutting out a section of genes from a chromosome and treated as a subproblem. This subproblem is then transformed into an asymmetric traveling salesman problem (ATSP) and solved with a heuristic algorithm. Subsequently, this section with new sequence is put back to replace the original section of chromosome. The incorporation of this problem-specific genetic operator is responsible for the hybrid adjective. By doing so, the course of the search of the proposed genetic algorithm is set to more profitable regions in the solution space. The experimental results show that this hybrid genetic algorithm can accelerate the convergence and improve solution quality as well.  相似文献   

14.
In this paper, we consider scheduling of deteriorating jobs on a single machine with slack (SLK) due date assignment, resource allocation, and a rate‐modifying activity. The rate‐modifying activity can change jobs’ processing rates such that the actual processing time of a job depends on whether the job is processed before or after the rate‐modifying activity. In addition, the actual processing time of a job also depends on its position in a processing sequence (i.e., the aging effect) and the amount of resource allocated to it. The objective is to determine the optimal sequence, optimal common flow allowance, optimal resource allocation, and optimal location of the rate‐modifying activity to minimize a total penalty function comprising the earliness, tardiness, common flow allowance, and resource allocation costs. We consider two variants of the problem associated with two different processing time functions and provide a polynomial‐time algorithm to solve each variant.  相似文献   

15.
赵晓丽  宫华  车平 《自动化学报》2020,46(1):168-177
研究了两个工件集合竞争在一台批处理机上加工的调度问题,其中每个集合的工件具有一个共同的释放时间.批处理机可以同时加工多个工件作为一批,每批的加工时间为该批工件中加工时间的最大值.基于两类释放时间的大小,针对无界批处理机上最小化一个集合工件的最大完工时间、最大延迟以及总完工时间,使得另一个集合工件的最大完工时间不超过给定上界问题,分别给出了最优求解方法.针对有界批处理机上最小化一个集合工件的最大完工时间,使得另一个集合工件的最大完工时间不超过给定上界问题,证明为一般意义NP-难问题,并给出伪多项式时间最优求解方法.  相似文献   

16.
In this paper we study the single-machine batch scheduling problem under batch availability, where both setup and job processing times are controllable by allocating a continuously divisible nonrenewable resource. Under batch availability a set of jobs is processed contiguously and completed together, when the processing of the last job in the batch is finished. We present polynomial time algorithms to find the job sequence, the partition of the job sequence into batches and the resource allocation, which minimize the total completion time or the total production cost (inventory plus resource costs).  相似文献   

17.
In this paper, we study the problem of minimizing the weighted sum of makespan and total completion time in a permutation flowshop where the processing times are supposed to vary according to learning effects. The processing time of a job is a function of the sum of the logarithms of the processing times of the jobs already processed and its position in the sequence. We present heuristic algorithms, which are modified from the optimal schedules for the corresponding single machine scheduling problem and analyze their worst-case error bound. We also adopt an existing algorithm as well as a branch-and-bound algorithm for the general m-machine permutation flowshop problem. For evaluation of the performance of the algorithms, computational experiments are performed on randomly generated test problems.  相似文献   

18.
We consider various single machine scheduling problems in which the processing time of a job depends either on its position in a processing sequence or on its start time. We focus on problems of minimizing the makespan or the sum of (weighted) completion times of the jobs. In many situations we show that the objective function is priority-generating, and therefore the corresponding scheduling problem under series-parallel precedence constraints is polynomially solvable. In other situations we provide counter-examples that show that the objective function is not priority-generating.  相似文献   

19.
We consider the problem of scheduling jobs on two parallel identical machines where an optimal schedule is defined as one that gives the smallest makespan (the completion time of the last job) among the set of schedules with optimal total flowtime (the sum of the completion times of all jobs). We propose an algorithm to determine optimal schedules for the problem, and describe a modified multifit algorithm to find an approximate solution to the problem in polynomial computational time. Results of a computational study to compare the performance of the proposed algorithms with a known heuristic shows that the proposed heuristic and optimization algorithms are quite effective and efficient in solving the problem.Scope and purposeMultiple objective optimization problems are quite common in practice. However, while solving scheduling problems, optimization algorithms often consider only a single objective function. Consideration of multiple objectives makes even the simplest multi-machine scheduling problems NP-hard. Therefore, enumerative optimization techniques and heuristic solution procedures are required to solve multi-objective scheduling problems. This paper illustrates the development of an optimization algorithm and polynomially bounded heuristic solution procedures for the scheduling jobs on two identical parallel machines to hierarchically minimize the makespan subject to the optimality of the total flowtime.  相似文献   

20.
具有线性恶化加工时间的调度问题   总被引:11,自引:0,他引:11  
讨论了工件具有线性恶化加工时间的调度问题.在这类问题中,工件的恶化函数为线性 函数.对单机调度问题中目标函数为极小化最大完工时间加权完工时间和,最大延误以及最大费 用等问题分别给出了最优算法.对两台机器极小化最大完工时间的Flowshop问题,证明了利用 Johnson规则可以得到最优调度.对于一般情况,如果同一工件的工序的加工时间均相等,则 Flowshop问题可以转化为单机问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号