首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tribological characteristics of the polished, dimpled and over-coated dimpled specimens were investigated. Dimples were produced on a Ti–6Al–4V alloy specimen using a laser surface texturing (LST). A Cr-doped diamond-like carbon (DLC) film was deposited on a dimpled specimen using an unbalanced magnetron sputtering (UBMS). The effects of dimples and over-coated Cr-doped DLC film on the tribological characteristics were investigated by performing the friction tests against a Cr-plated steel pin. The test results showed that the over-coated dimpled specimen exhibited a lower friction coefficient and wear compared to those of the polished and dimpled specimens, which may be attributed to the storage of wear debris and high hardness. A model of the wear reduction mechanism of the specimens was discussed.  相似文献   

2.
The tribological properties of ultrasonic nanocrystalline surface modification (UNSM) treated Al6061–T6 alloy were investigated at various normal loads under dry sliding conditions. Electron backscattering diffraction (EBSD) analysis revealed a microstructure alteration of about 70 μm in thickness generated by the UNSM technique. The friction test results showed that the friction coefficient and wear rate of the UNSM-treated specimen reduced by about 25 and 20% compared to that of the UNSM-free specimen, respectively. X-ray photoelectron spectroscopy (XPS) results showed that the oxide percentage on the worn surface increased, but that of carbon percentage decreased after the UNSM treatment.  相似文献   

3.
Abstract

This study proposes a combined method for the electrochemical mill-grinding of Ti–6Al–4V alloy to achieve a high material removal rate, high machining accuracy and good surface quality based on rough and finish machining. In the rough machining stage, a maximum feed rate of 2.7?mm min?1 and a material removal rate of 248.3?mm3 min?1 were achieved experimentally at a 10?mm cut depth using an abrasive tool with five rows of tool-sidewall outlet holes. In the finish machining stage, there were almost no overcuts or stray corrosions produced. The sidewall surface roughness and sidewall flatness were Ra = 1.06 and 76.8?μm after the finishing stage, which represent a 68% and 79.2% improvement compared with the rough machining stage, respectively. Finally, we fabricated a 1-mm-thick thin-walled structure using the combined machining operations, in which approximately 96% of the total material removal volume was performed at the rough machining stage.  相似文献   

4.
The simulation of ductile fracture in real components is becoming a strategic issue in numerical simulations. Numerical simulations of crashes, forming processes, impacts and fractures are reliable only if carried out with an accurate material calibration. The topics involved in this kind of simulation require a complete calibration of both the true stress–strain curve and the failure. The focus of this work is the accurate calibration of the constitutive relations of the titanium alloy Ti–6Al–4V. The approach proposed is based on different experimental tests supported by numerical simulations performed by means of detailed FE models. The Bao–Wierzbicki ductile failure criterion is calibrated using a total of 11 specimens. These specimens are tested on a multiaxial test machine to investigate the failure at different stress triaxialities. Furthermore, the sensitivity to the mesh size and the assessment of the calibration accuracy are analysed in detail on different components in order to verify the geometry transferability.  相似文献   

5.
Dry sliding wear tests were performed for Ti–6Al–4V alloy on a pin-on-disc wear tester. The wear behavior of Ti–6Al–4V alloy at sliding velocities of 0.5–4 m/s was studied and the tribo-oxides and their function were explored. Ti–6Al–4V alloy presented a marked variation of wear rate as a function of velocity. With the rise and fall of wear rate, Ti–6Al–4V alloy underwent the transitions of wear mechanisms from the combination of delamination wear and oxidative wear at lower speeds to delamination wear at 2.68 m/s, and then to oxidative wear at 4 m/s. These phenomena were attributed to the appearance and disappearance of tribo-oxides. In spite of trace or a small amount, tribo-oxides would change the wear behavior, and even wear mechanism.  相似文献   

6.
Y.S. Mao  L. Wang  K.M. Chen  S.Q. Wang  X.H. Cui 《Wear》2013,297(1-2):1032-1039
Dry sliding wear tests were performed for Ti–6Al–4V alloy under a load of 50–250 N at 25–500 °C on a pin-on-disk elevated temperature tester. Worn surfaces and subsurfaces were thoroughly investigated for the morphology, composition and structure of tribo-layers. Ti–6Al–4V alloy could not be considered to possess poor wear resistance at all times, and presented a substantially higher wear resistance at 400–500 °C than at 25–200 °C. The tribo-layer, a mechanical mixing layer, was noticed to exist on worn surfaces under various conditions. High wear rate at 25–200 °C was ascribed to no protective tribo-layer containing no or trace tribo-oxides. As more oxides appeared in the tribo-layers, they presented an obviously protective role due to their high hardness, thus giving a reasonable explanation for high wear resistance of Ti–6Al–4V alloy at 400–500 °C.  相似文献   

7.
8.
High-speed milling tests were carried out on Ti–6Al–4V titanium alloy with a polycrystalline diamond (PCD) tool. Tool wear morphologies were observed and examined with a digital microscope. The main tool failure mechanisms were discussed and analyzed utilizing scanning electron microscope, and the element distribution of the failed tool surface was detected using energy dispersive spectroscopy. Results showed that tool flank wear rate increased with the increase in cutting speed. The PCD tool is suitable for machining of Ti–6Al–4V titanium alloy with a cutting speed around 250 m/min. The PCD tool exhibited relatively serious chipping and spalling at cutting speed higher than 375 m/min, within further increasing of the cutting speed the flank wear and breakage increased greatly as a result of the enhanced thermal–mechanical impacts. In addition, the PCD tool could hardly work at cutting speed of 1,000 m/min due to the catastrophic fracture of the cutting edge and intense flank wear. There was evidence of workpiece material adhesion on the tool rake face and flank face in very close proximity to the cutting edge rather than on the chipped or flaked surface, which thereby leads to the accelerating flank wear. The failure mechanisms of PCD tool in high-speed wet milling of Ti–6Al–4V titanium alloy were mainly premature breakage and synergistic interaction among adhesive wear and abrasive wear.  相似文献   

9.
10.
Titanium and its alloys are attractive materials due to their unique high strength–weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. The major application of titanium has been in the aerospace industry. On the other hand, titanium and its alloys are notorious for their poor thermal properties and are classified as difficult-to-machine materials. The problems that arise during grinding of titanium alloys are attributed to the high specific energy and high grinding zone temperature. Significant progress has been made in dry and semidry machining recently, and minimal quantity lubrication (MQL) machining in particular has been accepted as a successful semidry application because of its environmentally friendly characteristics. A number of studies have shown that MQL machining can show satisfactory performance in practical machining operations. However, there has been few investigation of MQL grinding of special alloys like titanium alloys and the cutting fluids to be used in MQL grinding of these alloys. In this study, vegetable and synthetic esters oil are compared on the basis of the surface quality properties that would be suitable for MQL applications. The cutting performance of fluids is also evaluated using conventional wet (fluid) grinding of Ti–6Al–4V. As a result, synthetic ester oil is found to be optimal cutting fluids for MQL grinding of Ti–6Al–4V.  相似文献   

11.
In this paper micro-abrasion wear testing is used to evaluate the wear resistance of triode plasma diffusion-treated, single-layered TiN-, CrAlN-, and WC/C-coated and duplex-diffusion and coated Ti–6Al–4V under uniform three-body rolling abrasion. Nanoindentation, Knoop microhardness, mechanical surface profilometry, optical microscopy, scanning electron microscopy and atomic force microscopy, were used to characterise the surfaces under investigation. Optimum testing conditions for rolling abrasion were established by varying the test parameters and resultant severity of contact. Very low normal loads and high volume fractions of particles in the abrasive slurry are necessary to obtain predictable and reproducible results. Relatively coarse SiC abrasive particles, having a mean diameter of around 3 μm, appear more suitable for micro-abrasion testing of the samples investigated, compared to finer Al2O3 particles. Problems associated with the measurement of the scar volume and subsequent calculation of the wear rate for hard coatings deposited on relatively soft metals like titanium are identified, and suitable testing and measurement techniques are suggested. Three-dimensional wear scar maps generated by mechanical stylus profilometry were used to measure the wear volumes. Under the test conditions used, wear coefficients can be determined from perforating and non-perforating tests, although perforating tests provide more consistent results. Triode plasma diffusion treatments, plasma-assisted (PA) PVD TiN and PAPVD CrAlN can reduce the specific wear rate of Ti–6Al–4V, while PACVD-based WC/C coatings do not provide suitable protection against abrasive wear. The combination of triode plasma oxynitriding diffusion treatments and PVD coatings to create duplex treatments can also lead to further reductions in the coating wear coefficient when compared to non-duplex coatings deposited on non-pretreated substrates.  相似文献   

12.
In order to improve the tribological properties of titanium-based implants, sodium hydroxide (NaOH), hydrogen peroxide (H2O2) solutions, sol–gel hydroxyapatite (HA) film, thermal treatment and combined methods of NaOH solution/HA film, H2O2 solution/HA film are used to modify the surfaces of Ti–6Al–4V (coded TC4). The chemical states of some typical elements in the modified surfaces were detected by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of modified surfaces sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As the results, complex surfaces with varied components are obtained. All the methods are effective in improving the wear resistance of Ti–6Al–4V in different degrees. Among all, the surface modified by the combined method of NaOH solution/HA film gives the best tribological performances. The friction coefficient is also greatly reduced by the modification of NaOH solution. The order of the wear resistance under 3 N is as following: Ti–NaOH–HA>Ti–NaOH>Ti–HA>Ti–H2O2–HA>Ti–H2O2 >Ti–500; under 1 N is Ti–HA, Ti–NaOH–HA>Ti–NaOH. For Ti–H2O2, a very low friction coefficient and long wear life over 2000 passes is obtained under 1 N. SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characteristic of abrasive wear. Differently, abrasion, plastic deformation and micro–crack dominate the wear of Ti–HA; slight abrasive wear dominate the wear mechanism of Ti–NaOH and microfracture and abrasive wear for Ti–NaOH–HA and Ti–H2O2–HA, while the sample modified by thermal treatment is characterized by sever fracture. The superior friction reduction and wear resistance of HA films are greatly attributed to the slight plastic deformation of the film. NaOH solution is superior in improving the wear resistance and decreasing the friction coefficient under relative higher load (3 N) and H2O2 is helpful to reduce friction and wear under relatively lower load (1 N). Combined method of Ti–NaOH–HA is suggested to improve the wear resistance of Ti–6Al–4V for medial applications under fretting situations.  相似文献   

13.
This paper presents a series of experimental investigations of the effects of various machining conditions [dry, flooded, minimum quantity lubrication (MQL), and cryogenic] and cutting parameters (cutting speed and feed rate) on thrust force, torque, tool wear, burr formation, and surface roughness in micro-drilling of Ti–6Al–4V alloy. A set of uncoated carbide twist drills with a diameter of 700 μm were used for making holes in the workpiece material. Both machining conditions and cutting parameters were found to influence the thrust force and torque. The thrust force and torque are higher in cryogenic cooling. It was found that the MQL condition produced the highest engagement torque amplitude in comparison to the other coolant–lubrication conditions. The maximum average torque value was obtained in the dry drilling process. There was no substantial effect of various coolant–lubrication conditions on burr height. However, it was observed that the burr height was at a minimum level in cryogenic drilling. Increasing feed rate and decreasing spindle speed increased the entry and exit burr height. The minimum surface roughness values were obtained in the flood cooling condition. In the dry drilling process, increased cutting speed resulted in reduced hardness on the subsurface of the drilled hole. This indicates that the surface and subsurface of the drilled hole were subject to softening in the dry micro-drilling process. The softening at the subsurface of drilled holes under different cooling and lubrication conditions is much smaller compared to the dry micro-drilling process.  相似文献   

14.
Fretting behavior of Cu–Al coating on Ti–6Al–4V substrate was investigated with and without fatigue load. Soft and rough Cu–Al coating resulted in abrasive wear and a large amount of debris remained at the contact surface, which caused an increase in tangential force during the fretting test under gross slip condition. Fretting in the partial slip condition also showed the wear of coating. To characterize wear, dissipated energies during fretting were calculated from fretting loops and wear volumes were obtained from worn surface profiles. Energy approach of wear analysis showed a linear relationship between wear volume and accumulated dissipated energy. This relationship was independent of fatigue loading condition and extended from partial slip to gross slip regimes. As an alternate but simple approach for wear analysis, accumulated relative displacement range was correlated with the wear volume. This also resulted in a linear relationship as in the case of accumulated dissipated energy suggesting that the accumulated relative displacement range can be used as an alternative parameter for dissipated energy to characterize the wear. When the maximum wear depth was equal to the thickness of Cu–Al coating, harder Ti–6Al–4V substrate inhibited further increase in wear depth. Only when a considerable energy was supplied through a large value of the applied displacement, wear in the substrate material could occur beyond the thickness of coating.  相似文献   

15.
This paper seeks to improve the surface quality of electrical discharge machining (EDM) Ti–6Al–4V using plasma etching treatment and TiN coating. The EDM parameter setting is optimized firstly based on grey-Taguchi method. Four EDM parameters, including current (A), voltage (V), pulse duration (μs), and duty factor (%), are selected for multiple performance of lower electrode wear rate (EWR), higher material removal rate (MRR), and better surface roughness (SR). An orthogonal array, signal-to-noise (S/N) ratios, and analysis of variance (ANOVA) are used to analyze the effects of these EDM parameters. Normality tests show that all the distributions fit normality assumption with p?=?0.276, 0.688, and 0.663, respectively. The EDM process is stable over time monitored by Shewhart control charts. It is observed that there is an EDM damaged layer on the surface consisting of debris, microcracks, molten drops, and solidified metals by scanning electron microscopy. The plasma etching and TiN coating are employed to improve surface quality of the EDMed Ti–6Al–4V alloys. The results demonstrate that using the oxygen plasma etching treatment, the damaged phenomena are decreased, and the mean SR value is reduced from Ra?=?2.91 to Ra?=?2.50 μm. In addition, when the plasma-treated alloy is coated with Ti buffer/TiN coating by physical vapor deposition, the surface morphology exhibits less defects and a better surface finish. The mean SR values are further reduced from Ra?=?2.50 μm to Ra?=?1.48 μm (for 740 nm TiN film) and Ra?=?0.61 μm (for 1450 nm TiN film), respectively.  相似文献   

16.
Russian Journal of Nondestructive Testing - In this work, we conducted an experimental research to verify a developed analytical model based on the magnetic sensing of thermoelectric currents...  相似文献   

17.
This study focuses on Ti–6Al–4V ELI titanium alloy machining by means of plain peripheral down milling process and subsequent modeling of this process, in order to predict surface quality of the workpiece and identify optimal cutting parameters, that lead to minimum surface roughness. For the purpose of accomplishing this task a set of experiments were performed on a CNC milling centre and design of experiments based on Box Behnken Design (BBD) for a three factor and three level central composite design concept was conducted. Depth of cut, cutting speed and feed rate were selected as input parameters and surface roughness was measured after each experiment performed. At first, Response Surface Methodology (RSM) was employed for establishing a quadratic relationship between input and output parameters. Analysis of variance (ANOVA) was then conducted for the evaluation of the proposed formula. RSM was also used for the optimization analysis that followed for the determination of milling cutting parameters for minimum surface roughness. The analysis indicates that the use of BBD can reduce the number of experiments needed for modeling and optimizing the milling operation of Titanium alloys. Furthermore, this method is able to provide models that can reliably be used for any cutting conditions within the limits of the input data. Finally, Artificial Neural Networks (ANN) models were developed to allow for a more robust simulation model to be built and comparison between ANN and RSM models to be performed. From the presented results, for RSM, the mean square error and the correlation coefficient were determined to be 8.633 × 10−3 and 0.9713, respectively; for ANN models, the corresponding values were 2 × 10−3 and 0.9824, for the test group of the optimum model. Simulations indicated that, although input data were too few, a considerably reliable ANN model was able to be built and despite of its complexity compared to RSM model, it was proven to be superior in terms of prediction accuracy.  相似文献   

18.
Some particular metal alloys offer excellent stability of deformation, this property being termed superplasticity. In the aeronautical industry, superplastic forming associated with diffusion-bonding techniques allows the manufacturing of complex shapes in one operation. The purpose of this paper is to contribute to a better knowledge of the influence of parameters such as bulging pressure vs. time, lubricant, die geometry, etc. The superplastic forming of a Ti6Al4V alloy sheet at 927°C into a long, rectangular box-section has been studied. Sticking contact and Coulomb friction have been considered. The model presented here will be used to choose parameters — such as the friction coefficient — to be introduced subsequently into a more sophisticated model, such as one employing the three-dimensional finite-element method.  相似文献   

19.
In this work, an attempt has been made to use vibration signals for in-process prediction of surface roughness during turning of Ti–6Al–4V alloy. The investigation was carried out in two stages. In the first stage, only acceleration amplitude of tool vibrations in axial, radial and tangential directions were used to develop multiple regression models for prediction of surface roughness. The first and second order regression models thus developed were not found accurate enough (maximum percentage error close to 24%). In the second stage, initially a correlation analysis was performed to determine the degree of association of cutting speed, feed rate, and depth of cut and the acceleration amplitude of vibrations in axial, radial, and tangential directions with surface roughness. Subsequently, based on this analysis, feed rate and depth of cut were included as input parameters aside from the acceleration amplitude of vibrations in radial and tangential directions to develop a refined first order multiple regression model for surface roughness prediction. This model provided good prediction accuracy (maximum percentage error 7.45%) of surface roughness. Finally, an artificial neural network model was developed as it can be readily integrated into a computer integrated manufacturing environment.  相似文献   

20.
Electric hot incremental forming is feasible and easy to control to form hard-to-form sheet metals, but the limited accuracy is a major deficiency. In order to find methods to improve precision, single-point electric hot incremental of Ti–6Al–4V titanium sheet was numerically simulated using MSC.Marc, and experimental investigations were also carried out in this paper. Through numerical analysis, distributing laws of temperature, thermal strain, stress, and equivalent strain were revealed, and impacts of cold contract and thermal strain on forming were also revealed. Analysis showed that electric hot incremental forming is a complex pyroplastic deformation, and there is a large internal stress in single-point electric hot incremental forming. The incremental sheet forming region can be divided into three parts: bending deformation at the beginning, shear forming at middle, and reverse bending at last; it is important to enhance the accuracy of the bending part and the reverse bending part, and adequate support must be provided in the beginning to reduce the bending part. In order to form a workpiece with small angle, two-point incremental forming was adopted at first because the gravity of clamp can reduce the reverse bending, then single-point electric hot incremental forming was adopted to enhance the accuracy and reduce internal stress of workpiece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号