首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We revisit the classic problem of preemptive scheduling on m uniformly related machines. In this problem, jobs can be arbitrarily split into parts, under the constraint that every job is processed completely, and that the parts of a job are not assigned to run in parallel on different machines. We study a new objective which is motivated by fairness, where the goal is to minimize the sum of the two maximal job completion times. We design a polynomial time algorithm for computing an optimal solution. The algorithm can act on any set of machine speeds and any set of input jobs. The algorithm has several cases, many of which are very different from algorithms for makespan minimization (algorithms that minimize the maximum completion time of any job), and from algorithms that minimize the total completion time of all jobs.  相似文献   

2.
This paper is about scheduling parallel jobs, i.e. which can be executed on more than one machine at the same time. Malleable jobs is a special class of parallel jobs. The number of machines a malleable job is executed on may change during its execution.In this work, we consider the NP-hard problem of scheduling malleable jobs to minimize the total weighted completion time (or mean weighted flow time). For this problem, we introduce the class of “ascending” schedules in which, for each job, the number of machines assigned to it cannot decrease over time while this job is being processed.We prove that, under a natural assumption on the processing time functions of jobs, the set of ascending schedules is dominant for the problem. This result can be used to reduce the search space while looking for an optimal solution.  相似文献   

3.
We consider the problem of scheduling a set of jobs on a system that offers certain resource, wherein the amount of resource offered varies over time. For each job, the input specifies a set of possible scheduling instances, where each instance is given by starting time, ending time, profit and resource requirement. A feasible solution selects a subset of job instances such that at any timeslot, the total requirement by the chosen instances does not exceed the resource available at that timeslot, and at most one instance is chosen for each job. The above problem falls under the well-studied framework of unsplittable flow problem on line. The generalized notion of scheduling possibilities captures the standard setting concerned with release times and deadlines. We present improved algorithms based on the primal–dual paradigm, where the improvements are in terms of approximation ratio, running time and simplicity.  相似文献   

4.
We consider the problem of scheduling a set of nonsimultaneously available jobs on one machine. Each job has a ready time only at or after which the job can be processed. All the jobs have a common due date, which needs to be determined. The problem is to determine a due date and a schedule so as to minimize a total penalty depending on the earliness, tardiness and due date. We show that this problem is strongly NP-hard and give an efficient algorithm that finds an optimal due date and schedule when either the job sequence is predetermined or all jobs have the same processing time. We also propose three approximation algorithms for the general and special cases together with their experimental analysis.

Scope and purpose

We consider the single machine due date assignment problem for scheduling jobs which are ready for processing at different times. The problem under consideration arises in production planning and scheduling concerning the setting of appropriate due dates for a number of customer orders arriving over time. Most of the earlier publications on this subject assumed that the jobs are ready for processing simultaneously. This assumption is too restrictive for real-life production systems where jobs arrive at different times. We show that the problem with unequal ready times is NP-hard and develop fast heuristic algorithms for it, and exact algorithms for two special cases.  相似文献   

5.
We study a problem of scheduling a set of n jobs with unit processing times on a set of m multipurpose machines in which the objective is to minimize the makespan. It is assumed that there are two different job types, where each job type can be processed on a unique subset of machines. We provide an optimal offline algorithm to solve the problem in constant time and an online algorithm with a competitive ratio that equals the lower bound. We show that the worst competitive ratio is obtained for an inclusive job-machine structure in which the first job type can be processed on any of the m machines while the second job type can be processed only on a subset of m/2 machines. Moreover, we show that our online algorithm is 1-competitive if the machines are not flexible, i.e., each machine can process only a single job type.  相似文献   

6.
Resource optimal control in some single-machine scheduling problems   总被引:2,自引:0,他引:2  
We consider a problem to schedule a set of jobs on a single machine under the constraint that the maximum job completion time does not exceed a given limit. Before a job is released for processing, it must undergo some preprocessing treatment which consumes resources. It is assumed that the release time of a job is a positive strictly decreasing continuous function of the amount of resources consumed. The objective is to minimize the total resource consumption. We show that ordering jobs in nonincreasing processing times yields an optimal solution. We then consider a bicriterion approach to the problem in which the maximum job completion time and the resource consumption are simultaneously minimized and present a polynomial time solution algorithm. Finally, we consider a related problem in which the job release times are given but the processing times are functions of the amount of resource consumed. We show that ordering jobs in nondecreasing release times gives an optimal solution and that the problem to minimize both the maximum completion time and resource consumption is polynomially solvable  相似文献   

7.
In this paper, we consider a single batch machine scheduling problem with incompatible job families and dynamic job arrivals. The objective is to minimize the total completion time. This problem is known to be strongly NP-hard. We present several dominance properties and two types of lower bounds, which are incorporated to construct a basic branch and bound algorithm. Furthermore, according to the characteristics of dynamic job arrivals, a decomposed branch and bound algorithm is proposed to improve the efficiency. The proposed algorithms are tested on a large set of randomly generated problem instances.  相似文献   

8.
We study a generalized version of the minimum makespan jobshop problem in which multiple instances of each job are to be processed. The system starts with specified inventory levels in all buffers and finishes with some desired inventory levels of the buffers at the end of the planning horizon. A schedule that minimizes the completion time of all the operations is sought. We develop a polynomial time asymptotic approximation procedure for the problem. That is, the ratio between the value of the delivered solution and the optimal one converge into one, as the multiplicity of the problem increases. Our algorithm uses the solution of the linear relaxation of a time-indexed Mixed-Integer formulation of the problem. In addition, a heuristic method inspired by this approximation algorithm is presented and is numerically shown to out-perform known methods for a large set of standard test problems of moderate job multiplicity.  相似文献   

9.
This paper considers the identical parallel machines scheduling problem (PMSP) with a single server in charge of job setups. A job can be processed with a precedent setup by a server on one of the machines. The setup can be processed at only one machine at any time. In this paper, the problem P, S1|sj|Cmax with a general job set is formulated using mixed integer programming in two ways. The first one is developed by taking into account the characteristics of the single server problem, and the second one is developed by adding the concept of the server waiting time suggested by Abdekhodaee and Wirth (2002) [3]. Abdekhodaee and Wirth (2002) [3] define the equation of the server waiting time applied to only the special case with two machines and a regular job set. The general model for several machines is studied in this paper by developing the properties on the server waiting time. The hybrid heuristic algorithm is developed for the practical use, which can yield a near-optimal schedule in a reasonable computational time. The performance of algorithm is evaluated by comparing with the results of MIP models and heuristics appearing in the literature.  相似文献   

10.
We consider two single machine bicriteria scheduling problems in which jobs belong to either of two different disjoint sets, each set having its own performance measure. The problem has been referred to as interfering job sets in the scheduling literature and also been called multi-agent scheduling where each agent's objective function is to be minimized. In the first problem (P1) we look at minimizing total completion time and number of tardy jobs for the two sets of jobs and present a forward SPT-EDD heuristic that attempts to generate the set of non-dominated solutions. The complexity of this specific problem is NP-hard; however some pseudo-polynomial algorithms have been suggested by earlier researchers and they have been used to compare the results from the proposed heuristic. In the second problem (P2) we look at minimizing total weighted completion time and maximum lateness. This is an established NP-hard problem for which we propose a forward WSPT-EDD heuristic that attempts to generate the set of supported points and compare our solution quality with MIP formulations. For both of these problems, we assume that all jobs are available at time zero and the jobs are not allowed to be preempted.  相似文献   

11.
In this paper we study the single-machine batch scheduling problem under batch availability, where both setup and job processing times are controllable by allocating a continuously divisible nonrenewable resource. Under batch availability a set of jobs is processed contiguously and completed together, when the processing of the last job in the batch is finished. We present polynomial time algorithms to find the job sequence, the partition of the job sequence into batches and the resource allocation, which minimize the total completion time or the total production cost (inventory plus resource costs).  相似文献   

12.
P. Brucker  S. Knust 《Computing》1999,63(4):299-316
In a single-machine problem with time-lags a set of jobs has to be processed on a single machine in such a way that certain timing restrictions between the finishing and starting times of the jobs are satisfied and a given objective function is minimized. We consider the case of positive finish-start time-lags which mean that between the finishing time of job i and the starting time of job j the minimal distance has to be respected. New complexity results are derived for single-machine problems with constant positive time-lags which also lead to new results for flow-shop problems with unit processing times and job precedences. Received: May 13, 1998; revised November 23, 1998  相似文献   

13.
Minimizing Waiting Time Variance (WTV) is a job scheduling problem where we schedule a batch of nn jobs, for servicing on a single resource, in such a way that the variance of their waiting times is minimized. Minimizing WTV is a well known scheduling problem, important in providing Quality of Service (QoS) in many industries. Minimizing the variance of job waiting times on computer networks can lead to stable and predictable network performance. Since the WTV minimization problem is NP-hard, we develop two heuristic job scheduling methods, called Balanced Spiral and Verified Spiral, which incorporate certain proven properties of optimal job sequences for this problem. We test and compare our methods with four other job scheduling methods on both small and large size problem instances. Performance results show that Verified Spiral gives the best performance for the scheduling methods and problems tested in this study. Balanced Spiral produces comparable results, but at less computational cost. During our investigation we discovered a consistent pattern in the plot of WTV over mean of all possible sequences for a set of jobs, which can be used to evaluate the sacrifice of mean waiting time while pursuing WTV minimization.  相似文献   

14.
Suppose that we are given a set of jobs, where each job has a processing time, a non-negative weight, and a set of possible time intervals in which it can be processed. In addition, each job has a processing cost. Our goal is to schedule a feasible subset of the jobs on a single machine, such that the total weight is maximized, and the cost of the schedule is within a given budget. We refer to this problem as budgeted real-time scheduling (BRS). Indeed, the special case where the budget is unbounded is the well-known real-time scheduling problem. The second problem that we consider is budgeted real-time scheduling with overlaps (BRSO), in which several jobs may be processed simultaneously, and the goal is to maximize the time in which the machine is utilized. Our two variants of this real-time scheduling problem have important applications, in vehicle scheduling, linear combinatorial auctions, and Quality-of-Service management for Internet connections. These problems are the focus of this paper. Both BRS and BRSO are strongly NP-hard, even with unbounded budget. Our main results are (2 + ε)-approximation algorithms for these problems. This ratio coincides with the best known approximation factor for the (unbudgeted) real-time scheduling problem, and is slightly weaker than the best known approximation factor of e/(e - 1) for the (unbudgeted) real-time scheduling with overlaps, presented in this paper. We show that better ratios (or simpler approximation algorithms) can be derived for some special cases, including instances with unit-costs and the budgeted job interval selection problem (JISP). Budgeted JISP is shown to be APX-hard even when overlaps are allowed and with unbounded budget. Finally, our results can be extended to instances with multiple machines.  相似文献   

15.
We consider an uncertain single-machine scheduling problem, in which the processing time of a job can take any real value on a given closed interval. The criterion is to minimize the total weighted flow time of the n jobs, where there is a weight associated with a job. We calculate a number of minimal dominant sets of the job permutations (a minimal dominant set contains at least one optimal permutation for each possible scenario). We introduce a new stability measure of a job permutation (a stability box) and derive an exact formula for the stability box, which runs in O(n log n) time. We investigate properties of a stability box. These properties allow us to develop an O(n2)-algorithm for constructing a permutation with the largest volume of a stability box. If several permutations have the largest volume of a stability box, the developed algorithm selects one of them due to a simple heuristic. The efficiency of the constructed permutation is demonstrated on a large set of randomly generated instances with 10≤n≤1000.  相似文献   

16.
We study a problem of scheduling n independent parallel jobs on hypercubes. A parallel job is required to be scheduled on a subcube of processors. All jobs are available at the beginning, each of which is associated with a due date. The objective is to maximize the total number of early jobs. We provide an optimal polynomial time algorithm for the unit processing time job system.  相似文献   

17.
We consider the problem of minimizing total completion time in a two-stage hybrid flow shop scheduling problem with dedicated machines at stage 2. There exist one machine at stage 1 and two machines at stage 2. Each job must be processed on the single machine at stage 1 and depending upon the job type, the job is processed on either of the two machines at stage 2.  相似文献   

18.
We consider the problem of sequencing a set of jobs in a single machine to minimize the maximum of the total weighted completion time of the jobs over a number of scenarios, each corresponding to a set of job processing times. We give a large family of inequalities that are valid for the convex hull of the set of feasible schedules. We then present computational experience in which some of the inequalities are added to the original formulation. We demonstrate through the computational results that their addition to the formulation can substantially improve, among other things, the time required to solve difficult instances of the problem through branch-and-cut.  相似文献   

19.
This paper addresses a shop scheduling problem for the side frame press shop in a truck manufacturing company. In the problem, a set of n jobs to be scheduled on two machines. All the jobs require processing by the first machine more than once in their operation sequences with reentrant work flows. An unusual aspect of the problem is that the setup times required for a job in the first machine depend not on the immediately preceding job but on the job which is two steps prior to it. Redefining the job elements, the problem is formulated into a general two machine flow shop problem which has a set of job-element precedence constraints. The problem is solved with a modified dynamic programming with the objective of the minimum makespan. An optimal schedule is found utilizing the sequence dominance condition and a decision-delay scheme. A numerical example is presented for the illustration purpose.  相似文献   

20.
This paper studies two closely related online-list scheduling problems of a set of n jobs with unit processing times on a set of m multipurpose machines. It is assumed that there are k different job types, where each job type can be processed on a unique subset of machines. In the classical definition of online-list scheduling, the scheduler has all the information about the next job to be scheduled in the list while there is uncertainty about all the other jobs in the list not yet scheduled. We extend this classical definition to include lookahead abilities, i.e., at each decision point, in addition to the information about the next job in the list, the scheduler has all the information about the next h jobs beyond the current one in the list. We show that for the problem of minimizing the makespan there exists an optimal (1-competitive) algorithm for the online problem when there are two job types. That is, the online algorithm gives the same minimal makespan as the optimal offline algorithm for any instance of the problem. Furthermore, we show that for more than two job types no such online algorithm exists. We also develop several dynamic programming algorithms to solve a stochastic version of the problem, where the probability distribution of the job types is known and the objective is to minimize the expected makespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号