首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
简述了α-烯基磺酸盐(AOS)的特性,通过对AOS磺化反应机理的分析,就反应过程物料组成及相关控制指标进行了理论计算,提供了一系列理论数据,阐述了AOS生产工艺控制关键点。  相似文献   

2.
介绍了α-烯基磺酸盐(AOS)的特性及其应用发展历程,阐述了AOS的磺化反应机理。通过对AOS的生产工艺特点进行分析,阐明了其生产工艺控制关键点,并列举了典型的工艺数据。  相似文献   

3.
鱼鲲  柏子龙  张耀亨  盛刚 《精细化工》2005,22(Z1):28-30
以蜡裂解α-烯烃(AO)为原料制备了α-烯基磺酸盐(AOS)。所涉及的主要技术问题是:原料蜡裂解α-烯烃的精制处理,采用发烟硫酸为磺化剂的磺化工艺的优化。实验数据表明,采用蜡裂解AO为原料是可以生产 AOS的;其产物与市售AOS(采用乙烯齐聚α-烯烃合成)相比,色泽深、未磺化物含量高,然而实验室产品具有与市售AOS相当的表面张力,且发泡性能优于市售AOS。  相似文献   

4.
介绍了a-烯烃磺酸钠(AOS)的制备工艺及分析方法。AOS的制备主要分为磺化、中和和水解,阐述了每一步反应的工艺控制条件。详细介绍了AOS产品活性物、游离油、硫酸钠、游离碱和色泽的分析,认为需要建立产品的仪器分析方法。  相似文献   

5.
以单因素实验为基础,结合因子分析法研究了不同因素对α-烯烃磺酸盐(AOS)中磺内酯的影响。结果表明:AOS产品中的磺内酯含量与时间、温度和pH存在负相关;漂白剂的增加会导致AOS产品中磺内酯含量的降低,且氧化性越强,磺内酯含量下降得越多;4个因素对AOS产品中磺内酯下降的影响权重大小为:漂白剂pH温度时间。  相似文献   

6.
利用Ross-Miles法、电导率法和光学法等研究了阴离子表面活性剂α-烯基磺酸钠(AOS)和阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)不同摩尔比复配溶液的泡沫性能。结果表明,在表面活性剂的总浓度为cT=7.8×10-3mol/L时,AOS/CTAB不同摩尔比复配溶液的发泡性能与AOS溶液基本相当,但AOS/CTAB复配能较明显地提高体系的泡沫稳定性;不同摩尔比复配溶液的泡沫稳定性顺序为:AOS/CTAB 5∶1>AOS/CTAB 10∶1>AOS/CTAB15∶1>AOS/CTAB 20∶1>AOS。  相似文献   

7.
介绍了采用气相三氧化硫法生产的α-烯烃磺酸钠在液体洗涤剂配方中的应用。通过正交设计说明,影响黏度的最重要因素是氯化钠的质量分数。考察了不同碳数AOS对液体洗涤剂黏度的影响以及AOS与AES复配后液体洗涤剂去污力、调黏度和泡沫性能的区别,综合应用实验结果表明,AOS适合用于液体洗涤剂中。  相似文献   

8.
洗涤的无磷化是全世界关注的保护环境的技术课题之一。本文介绍了日本在开发沸石—AOS 系洗涤剂取代传统的含磷酸盐洗涤剂方面的成就,着重介绍了沸石、AOS 的开发及其作用,也介绍了在沸石—AOS 中加入新型酶后产生的效果,值得各国在环境保护方面推无磷化时参考。  相似文献   

9.
介绍了以AOS为主表面活性剂,通过配方优化,开发一种性能优良、成本合理的洁面乳产品的方法.试验表明AOS适合在表面活性剂型洁面乳中使用.  相似文献   

10.
通过考察脂肪醇聚氧乙烯醚硫酸盐(AES)、α-烯烃磺酸盐(AOS)、十二烷基苯磺酸钠(LAS)、甲酯磺酸盐(MES)和十二烷基硫酸钠(K12)这几种餐具用洗涤剂原料在不同水硬度条件下的去污能力,综合成本、增稠等方面,确定了以AES,AOS和LAS为主要的餐具用洗涤剂原料进行复配应用,考察了AES,AOS和LAS在不同配比时的去污力。结果表明,在水硬度较低的地区,m(LAS)∶m(AES)∶m(AOS)=9∶5∶1时去污力较强;而在水硬度较高的地区,m(LAS)∶m(AES)∶m(AOS)=1∶9∶5或1∶1∶1时去污力较强。  相似文献   

11.
烯基磺酸盐的开发,生产,性能及其应用   总被引:3,自引:0,他引:3  
本文综述了α-烯基磺酸盐的开发,生产过程,产品性能及其在家用洗涤剂中的应用。  相似文献   

12.
Alpha olefin sulfonates (AOS) have been used successfully for many years in laundry and personal-care products throughout Asia. Among their documented positive attributes are good cleaning and high foaming in both soft and hard water, rapid biodegradability, and good skin mildness. AOS has commonly been marketed as approximately 40%-active aqueous solutions. However, with the increased importance of compact powder detergents produced by processes other than spray drying, high-active forms of AOS including 70%-active pastes and 90+%-active powders are now being utilized for that product sector. In this regard, the rheological properties of non-Newtonian AOS and AOS/additive pastes at relevant process temperatures were measured and found potentially suitable for agglomeration processes. Also, the relationship of AOS powder particle size to surfactant solubility at various wash conditions was examined to allow determination of the optimal size for both detergency and processing of laundry powders. Both paste rheology and powder morphology are critical factors for the successful use of high-active AOS in compact powder detergents.  相似文献   

13.
The surface tension, surface dilational rheology, foaming and displacement flow properties of alpha olefin sulfonate (AOS) with inorganic salts were studied. The foam composite index (FCI), which reflects foaming capacity and foam stability, is used to evaluate foam properties. It is found that sodium and calcium salts can lead to decreases in AOS surface tension, critical micelle concentration, and molecular area at the gas–liquid interface. Sodium ions reduce the surface dilational viscoelasticity (E) and FCI of AOS, while calcium ions can enhance the E of AOS and make the FCI of AOS reach a maximum. In the solution containing calcium and sodium ions, the FCI of AOS is improved. Crude oil reduces the FCI of AOS. Injection pressure and displacing efficiency of AOS alternating carbon dioxide (CO2) injection are higher than injections of water alternating with CO2 or CO2 alone in low permeability cores.  相似文献   

14.
Single carbon number olefins derived from Ziegler technology were sulfonated in a continuous fallingfilm SO3 reactor. The resulting alpha olefin sulfonate (AOS) was evaluated in a dishwashing test at several water hardnesses. Statistical analysis of the data led to the selection of compositions suitable for hand dishwash applications. AOS, prepared by sulfonating a blend of C14 and C16 olefins, was evaluated for hand dishwashing efficiency in a ternary mixture consisting of AOS, an alcohol ether sulfate and monoethanolamide. Regression equations calculated from the data permit the prediction of performance levels for all practical combinations of the three ingredients. The effect of unreacted olefin on AOS dishwash performance was also determined. With a binary blend of AOS and monoethanolamide it was shown that up to 5% free oil (based on AOS active) could be tolerated without significant deleterious effect.  相似文献   

15.
Several sulfonation parameters, believed to be critical to the manufacture of good quality a-olefin sulfonate (AOS), are related to product color and conversion. The interfacial properties for single carbon number AOS and the major components comprising AOS are investigated. Results, based on surface activity, indicate that AOS in the molecular weight range from C14 through C18 should be of value in formulating efficient cleaning agents. The data show that AOS is more effective for lowering Crisco®/solution interfacial energy than the more commonly used surfactants. The alkene-1-sulfonate component of AOS was found to be most effective in lowering interfacial energy with the hydroxyalkane-1-sulfonate component being significantly less effective but still more effective than alcohol ether sulfate or linear alkylbenzene sulfonate of comparable molecular weight. Hand dishwashing efficacy was found greatest for the hydroxyalkane-1-sulfonate component of AOS, but combinations of hydroxyalkane-1-sulfonates and alkene-1-sulfonates were shown to be synergistic for laundering applications. The presence of the -OH group in the hydroxyalkane sulfonate structure was shown to increase solubility and lower surface activity significantly more than the presence of unsaturation in the alkene sulfonate. Long, single branching in the a-olefin sulfonate and random internal olefin sulfonate are shown to reduce drastically the surface activity. The hydroxyalkane and alkene-1-sulfonates were rapidly biodegraded. Disulfonates and long, singly branched sulfonate were more slowly degraded. Both 1,3-sultones and 1,4-sultones were found to biodegrade rapidly.  相似文献   

16.
Quantitatively describing the signal transduction process is important for understanding the mechanism of signal regulation in cells, and thus, poses both a challenge and an opportunity for chemical and biochemical engineers. An artificial neural network (ANN), in which we took the signal molecules as neural nodes, was constructed to simulate the generation of active oxygen species (AOS) in Taxus chinensis cells induced by a bio-elicitor. The relative contents of AOS in cells predicted by the ANN model agreed well with the experimental data and three notable stages of AOS increase were observed from the 3D figure of AOS generation. The robustness of AOS trajectories indicated that signal regulation in vivo was an integral feedback control model that ensured the adaptation of Taxus chinensis to environmental stress. The artificial neural network was able to predict taxol production as well as determine the optimal concentration of oligosaccharides needed for it.  相似文献   

17.
Performance and efficiency of anionic [sodium lauryl ether sulfate (SLES) and sodium α-olefin sulfonate (AOS)] and amphoteric [cocamidopropyl betaine (CAB)] as well as nonionic [cocodiethanol amide (DEA), various ethoxylated alcohols (C12–C15–7EO, C10–7EO and C9–C11–7EO) and lauramine oxide (AO)] surfactants in various dishwashing liquid mixed micelle systems have been studied at different temperatures (17.0, 23.0 and 42.0 °C). The investigated parameters were critical micelle concentration (CMC), surface tension (γ), cleaning performance and, foaming, biodegradability and irritability of anionic (SLES/AOS) and anionic/amphoteric/nonionic (SLES/AOS/CAB/AO) as well as anionic/nonionic (SLES/AOS/DEA/AO, SLES/AOS/C12-C15-7EO/AO, SLES/AOS/C10–7EO/AO and SLES/AOS/C9–C11–7EO/AO) dishwashing surfactant mixtures. In comparison to the starting binary SLES/AOS surfactant mixture, addition of various nonionic surfactants promoted CMC and γ lowering, enhanced cleaning performance and foaming, but did not significantly affect biodegradability and irritability of dishwashing formulations. The anionic/nonionic formulation SLES/AOS/C9–C11–7EO/AO shows both the lowest CMC and γ as well as the best cleaning performance, compared to the other examined dishwashing formulations. However, the results in this study reveal that synergistic behavior of anionic/nonionic SLES/AOS/ethoxylated alcohols/AO formulations significantly improves dishwashing performance and efficiency at both low and regular dishwashing temperatures (17.0 and 42.0 °C) and lead to better application properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号