首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Y6Si3O9N4:Ce3+ phosphor was prepared by a solid-state reaction in reductive atmosphere. X-ray powder diffraction (XRD) analysis confirmed the formation of Y6Si3O9N4:Ce3+. Scanning electron microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 5 μm. Photoluminescence (PL) measurements showed that the phosphor can be efficiently excited by near ultraviolet (UV) or blue light excitation, and exhibited bright green emission peaked at about 525 nm. Compared with Ce3+-doped Y4Si2O7N2 phosphors, Ce3+-doped Y6Si3O9N4 phosphors showed longer wavelengths of both excitation and emission. The Y6Si3O9N4:Ce3+ is a potential green-emitting phosphor for white LEDs.  相似文献   

2.
Cerium-doped Lu4Si2O7N2 green phosphors were synthesized by a high-temperature solid-state reaction method under nitrogen atmosphere. Compared with Ce-doped Y4Si2O7N2 phosphors, Ce-doped Lu4Si2O7N2 phosphors showed longer wavelengths of both excitation and emission, lower Stokes shift, and much stronger emission intensity. Based on the first-principles calculations of the two phosphors, the strong emission intensity originates from the large density of states. At last, the effects of Ce3+ concentration on photoluminescence were also examined.  相似文献   

3.
L.H. Jiang  C.Y. Li  J.Q. Hao 《Materials Letters》2007,61(29):5107-5109
Borates LiSr4(BO3)3 were synthesized by high-temperature solid-state reaction. The thermoluminescence (TL) and some of the dosimetric characteristics of Ce3+-activated LiSr4(BO3)3 were reported. The TL glow curve is composed of only one peak located at about 209 °C between room temperature and 500 °C. The optimum Ce3+ concentration is 1 mol% to obtain the highest TL intensity. The TL kinetic parameters of LiSr4(BO3)3:0.01Ce3+ were studied by the peak shape method. The TL dose response is linear in the protection dose ranging from 1 mGy to 1 Gy. The three-dimensional thermoluminescence emission spectra were also studied, peaking at 441 and 474 nm due to the characteristic transition of Ce3+.  相似文献   

4.
Sr4Si3O8Cl4:Eu2+ and Sr3.5Mg0.5Si3O8Cl4:Eu2+ phosphors were prepared by a conventional solid state reaction (SS). Excited by 370 nm near-ultraviolet light, the phosphors show an efficient bluish-green wide-band emission centering at 484 nm, which originates from the 4f5d1 → 4f7 transition of Eu2+ ion. The excitation spectra of the phosphors are a broad band extending from 250 nm to 400 nm. Mg2+-codoping greatly enhances the bluish-green emission of the phosphors. An LED was fabricated by coating the Sr3.5Mg0.5Si3O8Cl4:0.08Eu2+ phosphor onto an ~ 370 nm-emitting InGaN chip. The LED exhibits bright bluish-green emission under a forward bias of 20 mA. The results indicate that Sr3.5Mg0.5Si3O8Cl4:0.08Eu2+ is a candidate as a bluish-green component for fabrication of NUV-based white LEDs.  相似文献   

5.
This paper reports on the luminescence and microstructural features of oxide nano-crystalline (Y2O3:Eu3+) and submicron-sized (Y2SiO5:Ce3+,Tb3+) phosphor cores, produced by two different synthesis techniques, and subsequently coated by an inert shell of SiO2 using a sol-gel process. The shells mitigate the detrimental effect of the phosphor particle surfaces on the photoluminescence emission properties, thereby increasing luminous output by 20-90%, depending on the core composition and shell thickness. For Y2O3:Eu3+, uniformly shaped, narrow particle size distribution core/shell particles were successfully fabricated. The photoluminescence emission intensity of core nanoparticles increased with increasing Eu3+ activator concentration and the luminescence emission intensity of the core/shell particles was 20-50% higher than that of the core particles alone. For Y2SiO5:Ce3+,Tb3+, the core/shell particles showed enhancement of the luminescence emission intensity of 35-90% that of the core particles, depending on the SiO2 shell thickness.  相似文献   

6.
A new composition of red strontium aluminate phosphor (Sr4Al2O7:Eu3+, Eu2+) is synthesized using a solid state reaction method in air and in a reducing atmosphere. The investigation of firing temperature indicates that a single phase of Sr4Al2O7 is formed when the firing temperature is higher than 1300 °C and that a Sr3Al2O6 phase is formed as the main peak below 1300 °C. The effects of firing temperature and doping concentration on luminescent properties are investigated. Sr4Al2O7 phosphors exhibit the typical red luminescent properties of Eu3+ and Eu2+. A comparison photoluminescence study with Sr3Al2O6 phosphor shows that Sr4Al2O7 has higher emission intensity than Sr3Al2O6 as a result of the higher optimum doping concentration of Sr4Al2O7 phosphor.  相似文献   

7.
《Materials Letters》2004,58(1-2):48-50
A strong blue-white emission phosphor Sr2CeO4 superfine particles, containing SrCe4O7, have been synthesized using a citrate-gel method. The crystalline phase and luminescence properties of superfine particles are reported. The results show that the strong blue-white emission is assigned to Ce4+–O2− charge-transfer transition (CTT) of Sr2CeO4 and is not related to a lattice defect. The emission spectrum of post-heat-treated particles exhibits a broad band maximum at 470 nm, and the emission intensity is not affected by the existence of SeCe4O7.  相似文献   

8.
Sr4Si3O8Cl4: Eu2+ phosphors were synthesized by the solid-reaction at high temperature. The emission intensity reaches a maximum at 0.08 mol% of Eu2+ concentration. The present paper mainly focused on the effects of Zn2+ on the crystallization behavior and photoluminescence (PL) properties of Sr4Si3O8Cl4:0.08Eu2+. Results suggested that no new phase is introduced by co-doping with a small amount of Zn2+ ions, but when co-doped with excessive amount of Zn2+ ions, Sr2ZnSi2O7 appears. We find that the co-doping of a small amount of Zn2+ could remarkably improve the PL intensity of Sr4Si3O8Cl4:0.08Eu2+. When x = 0.05, the intensity of Sr4Si3O8Cl4:0.08Eu2+,xZn2+ was increased up to 2.3 times that of pure Sr4Si3O8Cl4:0.08Eu2+, which could be attributed to the flux effect of Zn2+ ions, and the Zn2+ doping reduces the opportunities of the energy transfer between Eu2+.  相似文献   

9.
Blue–white phosphor Sr2CeO4 belongs to a particular class of optical materials whose luminescence is governed by optical transitions associated with the electron charge transfer. The originality of its crystallographic structure, a chain-like sequence of luminescent centers, permits an effective transfer of the electronic excitation energy from the host to doped centers. Sr2CeO4, рure and doped with Eu3+-ions of different concentrations, was synthesized by the Pechini citrate-gel method. The luminescence spectra and luminescence decay curves of Sr2CeO4 and Sr2CeO4:Eu3+ at 300 and 80 K were investigated. The performed experiments revealed the Förster nonradiative energy transfer under the energy migration condition from the crystal host to the doped europium ions.  相似文献   

10.
Ce3+ doped La4Ca(SiO4)3O phosphors with silicate oxyapatite structure were synthesized by the sol-gel process. The X-ray diffraction (XRD) patterns showed that a pure phase was formed when sintering temperature was higher than 1300°C. The optical properties of La4Ca(SiO4)3O:Ce3+ phosphors with varying sintering temperature and concentration were investigated by examining their excitation and emission spectroscopy. The phosphors exhibited a broad emission band centered at 550nm which could be attributed to the 5d-4f transition of Ce3+ and a stronger excitation peak around 467nm as well as several shoulder bands, nicely matching with the widely applied blue LED chips. Higher emission intensity was observed when firing temperature above 1300°C, due to increasing crystallinity of the powders. When Ce3+ concentration was equal to 5 at%, the sample exhibited the optimum excitation and emission efficiency. The results indicate that La4Ca(SiO4)3O:Ce3+ is a promising candidate in the application of blue chip excited white light emitting diodes (LEDs).  相似文献   

11.
12.
Z.C. Wu  J.X. Shi  J. Wang  H. Wu  Q. Su  M.L. Gong   《Materials Letters》2006,60(29-30):3499-3501
SrAl2O4:Eu2+ phosphor was prepared by a solid-state reaction in CO-reductive atmosphere. X-ray powder diffraction (XRD) analysis confirmed the formation of SrAl2O4:Eu2+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 7–8 μm. Photoluminescence measurements showed that the phosphor can be efficiently excited by UV–visible light from 350 to 430 nm, and exhibited bright green emission peaked at about 516 nm. Bright green LEDs were fabricated by incorporating the phosphor with an InGaN-based UV chip. All the characteristics indicated that SrAl2O4:Eu2+ is a good candidate phosphor applied in white LEDs.  相似文献   

13.
A novel blue-emitting phosphor based on a phosphate host matrix, NaSrPO4:Eu2+, was prepared by a conventional solid-state reaction method. The NaSrPO4:Eu2+ phosphor was efficiently excited at wavelengths of 250-450 nm, which is suitable for the emission band of near ultraviolet (n-UV) light-emitting-diode (LED) chips (350-430 nm). The NaSrPO4:Eu2+ phosphor exhibits a strong blue emission peaking at 453 nm and broadly weak green and red emission bands up to 700 nm. The effect of the activated Eu2+ concentration on the emission intensity of the NaSrPO4:Eu2+ was also investigated. Here, a phosphor-converted LED (pc-LED) was fabricated and exhibits bright blue emission under a forward bias of 20 mA. All of these characteristics suggest that the NaSrPO4:Eu2+ phosphors could be applicable to n-UV based white LEDs.  相似文献   

14.
Color point tuning is an important challenge for improving the practical applications of various displays, especially there are very limited white color single hosts that emits in the white spectrum. In this paper, the possibility of color tuning by substituting part of host lattice cation (Sr2+ ions) by Ca2+ or Ba2+ ions in an efficient strontium aluminate phosphor, Sr4Al14O25:Eu2+,Dy3+, is reported and found to be very promising for displays. A detail study by replacing part of Sr2+ with Ca2+ or Ba2+ has been investigated. X-ray diffraction study showed that crystal structure of Sr4Al14O25 is preserved up to 20 mol of Ca2+ ion exchange while it is limited to 10 mol of Ba2+ ions exchange. Substantial shift in the emission band and color were observed by substitution of Sr2+ by Ca2+ or Ba2+ ions. A bluish-white emission and afterglow was observed at higher Ca2+ ions substitution. Further, partial Ca2+ substitutions (up to 0.8 mol) resulted in enhanced afterglow of Sr4Al14O25:Eu2+,Dy3+ phosphor. However, Ba2+ substitution decreased the fluorescence as well afterglow of the Sr4Al14O25:Eu2+,Dy3+ phosphor significantly. The enhanced phosphorescence by partial Ca2+ substitution is explained on the basis of increased density of shallow traps associated with higher solubility of Dy3+ ions in to the host lattice due to equivalent size of Ca2+ and Dy3+ ions. Thus, Ca2+ substitution in the Sr4Al14O25:Eu2+,Dy3+ phosphor is a promising method for tuning the emission color and improving the afterglow intensity of the phosphor.  相似文献   

15.
A novel yellowish green phosphor tervalent terbium (Tb3+) doped strontium molybdate (SrMoO4) was synthesized by conventional solid-state reaction method and its crystal structure and luminescent properties are investigated in this paper. The X-ray diffraction patterns (XRD) showed that the phosphor sintered at 750 °C for 3 h was a pure SrMoO4 phase. The excitation spectrum consisted of two bands and the two excitation peaks located at 375 nm and 488 nm respectively. The emission spectrum was composed of four narrow bands, in which the strongest emission was located at 548 nm. The particle size analysis indicated that the median particle size D50 = 2.89 μm and range of particle size distribution was narrow. These results showed that the SrMoO4:Tb3+ phosphor was a promising yellowish green phosphor for ultraviolet light emitting diode (UVLED) and blue LED based white LED. The appropriate concentration of Tb3+ was 5 mol% for the highest emission intensity at 548 nm. Natrium ion (Na+) was found to be a promising charge compensator for SrMoO4:Tb3+ phosphor.  相似文献   

16.
A series of single-phase full color phosphors, Dy3+-doped Li2SrSiO4 was synthesized by a solid-state reaction method. The phase of the as-prepared powders was measured by X-ray diffraction pattern (XRD) and the chemical composition was characterized using energy dispersive spectroscopy (EDS). The luminescent properties of Li2SrSiO4:Dy3+ were systematically investigated by concentration quenching, decay behavior and thermal stability measurements. The results suggested that the emission intensity of the Li2SrSiO4:Dy3+ was much stronger than that of Li2SrSiO4:Eu2+. It was worth to mention that Li2SrSiO4:Dy3+ phosphor possessed excellent thermal stability for use in light-emitting diodes (LEDs) and the emission intensity measured at 300 °C was only decreased 8% comparing with that measured at room temperature. Furthermore, the Commission International del’Eclairage (CIE) chromaticity coordinates of Li2SrSiO4:Dy3+ moved toward the ideal white light coordinates (0.33, 0.33). All results demonstrated that Li2SrSiO4:Dy3+ might be a potential phosphor for NUV-based white light-emitting diodes.  相似文献   

17.
Ce3+-activated yttrium aluminum garnet (Y3Al5O12:Ce, YAG:Ce) powder as luminescent phosphor was synthesized by the solid-state reaction method. The phase identification, microstructure and photoluminescent properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), absorption spectrum and photoluminescence (PL) analysis. Spherical phosphor particle is considered better than irregular-shaped particle to improve PL property and application, so this phosphor was granulated into a sphere-like shape by a spray-drying device. After calcinating at 1500 °C for 0, 4, and 8 h, the product was identified as YAG and CeO2 phases. The CeO2 phase content is decreased by increasing the calcination time or decreasing the Ce3+ doping content. The product showed higher emission intensity resulted from more Ce3+ content and larger grain size. The product with CeO2 was found to have lower emission intensity. This paper presents the crystal structures of Rietveld refinement results of powder XRD data.  相似文献   

18.
Single-phase Ca3Sc2Si3O12:Ce3+ green emission phosphor was synthesized by the hydrothermal silicon alkoxide gelation method. Such specimens demonstrated higher emission intensity than the Ca3Sc2Si3O12:Ce3+ samples that are prepared by conventional solid-state reaction method. It was also demonstrated that annealing in the presence of graphite as an oxygen scavenger significantly improves the fluorescence properties of this material.  相似文献   

19.
A novel blue-emitting Sr3Al2O5Cl2:Ce3+,Li+ phosphor has been synthesized by solid state reaction. The excitation spectrum shows a broad band extending from 300 to 400 nm, and the emission spectrum shows a broad blue band peaking at 450 nm with a half width of about 100 nm. The emission intensity at 250 °C remains at about 50% of that at room temperature. The decay curve at the emission peak consists of fast and slow components. The Sr3Al2O5Cl2:Ce3+,Li+ should be a promising blue phosphor for near ultraviolet-based white-light-emitting diodes.  相似文献   

20.
Sr2Mg(BO3)2:Ce3+,Li+ and Sr2Mg(BO3)2:Ce3+,Li+,Mn2+ phosphors have been synthesized by conventional solid state reaction technology at 900 °C for 12 h in reducing atmosphere. The phase purity, photoluminescence (PL) properties, thermal stability, energy transfer and luminescent decay curves have been investigated. Sr2Mg(BO3)2:Ce3+,Li+,Mn2+ phosphors show blue and deep-red1 emission bands. The deep-red emission band is attributed to the energy transfer from Ce3+ to Mn2+. The fluorescence lifetimes of Ce3+ in co-doped sample are shorter than that in single doped one, which confirms that the energy transfer takes place. The phosphors have weak thermal quenching. The luminescence properties of Sr2Mg(BO3)2:Ce3+,Li+,Mn2+ make the phosphor a new bicolor emitting material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号