首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A new inorganic-organic hybrid material based on polyoxometallate, [L-C2H6NO2]3[(PO4)Mo12O36]·5H2O, has been successfully synthesized and characterized by single-crystal X-ray analysis, elemental analysis, infrared and ultraviolet spectroscopy, proton nuclear magnetic resonance and differential thermal analysis techniques. The title compound crystallizes in the monoclinic space group, P21/c, with a = 12.4938 (8) Å, b = 19.9326 (12) Å, c = 17.9270 (11) Å, β = 102.129 (1)°, V = 4364.8 (5) Å3, Z = 4 and R1(wR2) = 0.0513, 0.0877. The most remarkable structural feature of this hybrid can be described as two-dimensional inorganic infinite plane-like (2D/∞ [(PO4)Mo12O36]3−) which forming via weak Van der Waals interactions along the z axis. The characteristic band of the Keggin anion [(PO4)Mo12O36]3− appears at 210 nm in the UV spectrum. Thermal analysis indicates that the Keggin anion skeleton begins to decompose at 520 °C.  相似文献   

2.
A new iron(III) phosphate Na3Fe3(PO4)4 has been synthesized and characterized. It decomposes before melting at 860°C into FePO4 and Na3Fe2(PO4)3. The structure of the compound was determined by single-crystal X-ray diffraction. The unit cell is monoclinic with the following parameters: a=19.601(8) Å, b=6.387(1) Å, c=10.575(6) Å and β=91.81(4)°; Z=4; space group: C2/c. Na3Fe3(PO4)4 exhibits a layered structure involving corner-linkage between FeO6 octahedra, and corner- and edge-sharing between FeO6 octahedra and PO4 tetrahedra. The Na+ cations occupying the interlayer space are six- and seven-fold coordinated by oxygen atoms. The relationship between the structure of Na3Fe3(PO4)4 and the previous reported hydrate K3Fe3(PO4)4·H2O will be discussed.  相似文献   

3.
A lithium bismuth phosphate, Li2Bi14.67(PO4)6O14, has been synthesized for the first time by the solid-state method. The crystal structure was determined by single crystal X-ray diffraction at 150 K. Li2Bi14.67(PO4)6O14 crystallizes in the monoclinic system C2/c (No. 15), with a = 30.8189(4) Å, b = 5.2691(3) Å, c = 24.5302(3) Å, β = 122.84(2)°, V = 3346.81(1) Å3 and Z = 2. The structure along the b axis consists of layers of [Bi2O2] units as the basic building block. These are separated by isolated PO4 and LiO4 tetrahedra. The oxygen co-ordination around two of the phosphorus atoms is disordered. Solid-state 7Li NMR studies confirm the presence of lithium in the structure. The material shows ionic conductivity of the order of 10−5 S cm−1 at 600 °C.  相似文献   

4.
The family of titanium Nasicon-phosphates of generic formula M0.5IITi2(PO4)3 has been revisited using hydrothermal techniques. Two phases have been synthesized: Mn0.5IITi2(PO4)3 (MnTiP) and Co0.5IITi2(PO4)3 (CoTiP). Single crystal diffraction studies show that they exhibit two different structural types. Mn0.5IITi2(PO4)3 phosphate crystallizes in the R-3 space group, with the cell parameters a = 8.51300(10) Å and c = 21.0083(3) Å (V = 1318.52(3) Å3 and Z = 6). The Co0.5IITi2(PO4)3 phosphate crystallizes in the R-3c space group, with a = 8.4608(9) Å and c = 21.174(2) Å (V = 1312.7(2) Å3 and Z = 6). These two compounds are clearly related to the parent Nasicon-type rhombohedral structure, which can be described using [Ti2(PO4)3] framework composed of two [TiO6] octahedral interlinked via three [PO4] tetrahedra. 31P magic-angle spinning nuclear magnetic resonance (MAS-NMR) data are presented as supporting data. Curie-Weiss-type behavior is observed in the magnetic susceptibility. The phases are also characterized by IR spectroscopy and UV-visible.  相似文献   

5.
A single-crystal X-ray diffraction analysis has been performed on LiEr(PO3)4 prepared by the flux method. The compound crystallizes in the monoclinic system with space group C2/c and cell parameters: a = 16.262(2), b = 7.032(1), c = 9.549(2) Å and β = 125.95(1)°. The crystal structure was refined based on 1272 independent reflections with I > 2σ(I). Final values of the reliability factors were improven considerably: R(F2) = 0.0180 and wR(F2) = 0.0490. The LiEr(PO3)4 structure is characterized by infinite chains (PO3)n, extending parallel to the b direction. The ErO8 dodecahedra and LiO4 tetrahedra alternate on two-fold axes in the middle of four (PO3)n chains. The vibrational study by infrared absorption spectroscopy is reported.  相似文献   

6.
A new lithium cobalt metaphosphate, LiCo(PO3)3, is reported for the first time, which was discovered during the exploratory synthesis in Li-Co-P-O system by solid state reaction. The structure has been refined by powder X-ray Rietveld refinement method (P212121, a = 8.5398(2) Å, b = 8.6326(2) Å and c = 8.3520(2) Å, Z = 4, Rp = 13.6%, Rwp = 19.4%, Rexp = 17.7%, S = 1.11, χ2 = 1.23). It is isostructural with LiM(PO3)3 (M = Fe, Cu). It contains (PO3)1− chains with the Co atoms localized in the octahedral sites, bridging four neighboring chains. The magnetic susceptibility measurement showed a typical paramagnetic behavior of high spin of Co2+, following the Curie-Weiss law in the temperature range of 5-300 K. Unlike the olivine type lithium cobalt phosphate, LiCoPO4, cyclic voltammetry of LiCo(PO3)3 assembled in the coin-type cell showed no electrochemical activity in the voltage region of 1-5 V versus Li/Li+.  相似文献   

7.
Chemical preparation, crystal structure and NMR spectroscopy of a new organic cation 5-chloro(2,4-dimethoxy)anilinium monophosphate H2PO4 are given. This new compound crystallizes in the monoclinic system, with the space group P21/c and the following parameters: a = 5.524(2) Å, b = 9.303(2) Å, c = 23.388(2) Å, β = 90.66(4), V = 1201.8(2) Å3, Z = 4 and Dx = 1.573 g cm−3. Crystal structure has been determined and refined to R = 0.031 and Rw = 0.080 using 1702 independent reflections. Structure can be described as an infinite (H2PO4)nn corrugated chains in the a-direction. The organic groups (5-Cl-2,4-(OCH3)2C6H2NH3)+ are anchored between adjacent polyanions through multiple hydrogen bonds. This compound is also investigated by IR, thermal, and solid-state, 13C, 31P MAS NMR spectroscopies.  相似文献   

8.
Chemical preparation, crystal structure, calorimetric, and spectroscopic investigations are given for a new organic-cation dihydrogenomonophosphate, (4-C2H5C6H4NH3)H2PO4 in the solid state. This compound crystallizes in the orthorhombic space group Pbca with the following unit cell parameters: a=8.286(3) Å, b=9.660(2) Å, c=24.876(4) Å, Z=8, V=1991.2(7) Å3, and DX=1.442 g cm−3. Crystal structure was solved with a final R=0.054 for 3305 independent reflections. The atomic arrangement coaled described as H2PO4 layers between which are located the 4-ethylanilinium cations.  相似文献   

9.
A new yttrium borate compound K3Y3(BO3)4 has been obtained in the K2O-Y2O3-B2O3 ternary system. Its structure, determined from single crystal X-ray diffraction data, shows that it belongs to space group P21/c with unit cell dimensions of a = 10.4667(16) Å, b = 17.361(3) Å, c = 13.781(2) Å and β = 110.548(8)°. The structure consists sheets of [Y8B8O24] linked by out of sheet BO3 groups and Y ions to form a three-dimensional framework. The luminescent properties of Eu3+ and Tb3+ doped K3Y3(BO3)4 materials have also been studied.  相似文献   

10.
The new lead vanadium phosphate Pb1.5V2(PO4)3 was synthesized by solid state reaction and characterized by X-ray powder diffraction, electron microscopy, and magnetic susceptibility measurements. The crystal structure of Pb1.5V2(PO4)3 (a = 9.78182(8) Å, S.G. P213, Z = 4) was determined from X-ray powder diffraction data and belongs to the langbeinite-type structures. It is formed by corner-linked V3+O6 octahedra and tetrahedral phosphate groups resulting in a three-dimensional framework. The lead atoms are situated in the structure interstices and only partially occupy their positions. An electron microscopy study confirmed the structure solution. Magnetic susceptibility measurements revealed Curie-Weiss (CW) behavior for Pb1.5V2(PO4)3 at high temperature whereas at around 14 K an abrupt increase on the susceptibility was observed.  相似文献   

11.
Structure transformations and proton conductivity of hydrogen zirconium phosphates with the NASICON structure, HXZr2−XMX(PO4)3·H2O (X = 0, 0.02 and 0.1, M = Nb, Y), were studied by X-ray powder diffraction, calorimetry, IR- and impedance spectroscopy. Substitution of zirconium by niobium leads to decrease of the lattice parameters, while yttrium doping leads to their increase. H0.9Zr1.9Nb0.1(PO4)3 structure was determined at 493 and 733 K. This phase crystallizes in rhombohedral space group with lattice parameters a = 8.8564(5) Å, c = 22.700(1) Å at 493 K and a = 8.8470(2) Å, c = 22.7141(9) Å at 733 K. The a parameter and lattice volume were found to decrease with temperature increasing. Structure transformations upon heating are caused mainly by the decrease of the M1 site and C cavities. Ion conductivity of obtained materials was found to increase in humid atmosphere. Activation energies of conductivity were calculated. Rhombohedral-triclinic phase transition found by X-ray powder diffraction was proved by calorimetry data. According to XRD and IR spectroscopy data hydrogen bond in HZr2(PO4)3 was found to be weaker than in hydrated material.  相似文献   

12.
Chemical preparation, crystal structure, calorimetric studies and spectroscopic investigation are given for a new organic cation dihydrogenomonophosphate [3,5-(CH3O)2C6H3NH3]2(H2PO4)2. This compound is triclinic with the following unit cell parameters: a=9.030(6) Å, b=16.124(5) Å, c=8.868(3) Å, α=75.04(3)°, β=110.71(4)°, γ=104.61(1)°, Z=4, V=1148.0(1) Å3, Z=2 and ρcal.=1.454 g cm−3. Crystal structure was solved and refined to R=0.04, 2752 independent reflections. The atomic arrangement can be described as inorganic layers of H2PO4 anions parallel to planes, between which are located the organic groups. Solid-state and MAS-NMR spectroscopies are in agreement with the X-ray structure. Ab initio calculations allow the attribution of the phosphorous and carbon signals to the independent crystallographic sites and to the various atoms of the organic groups.  相似文献   

13.
Colorless platelet crystals of monoclinic Li2TiO3 with a maximum size of 5.0 mm × 5.0 mm × 0.5 mm were successfully grown by a flux method at 1373 K using a LiBO2-Li2O system flux. The stoichiometric chemical composition of Li2TiO3 was determined by the SEM-EDX, ICP-AES and density measurement using the single crystal samples. The thermal conductivity of the Li2TiO3 single crystals was evaluated using hot-disk method. A single-crystal X-ray diffraction study confirmed the monoclinic Li2SnO3-type structure, space group C2/c and the lattice parameters of a = 5.0623(5) Å, b = 8.7876(9) Å, c = 9.7533(15) Å, β = 100.212(11)°, and V = 427.01(9) Å3. The crystal structure was refined to the conventional values of R = 2.4% and wR=3.3% for 2187 independent observed reflections. The cationic arrangement of (LiTi2) layers in Li2TiO3 was precisely revealed by the structure analysis.  相似文献   

14.
The new titanium oxyphosphate Co0.5TiPO5 has been prepared by solid state reaction. Its structure has been determined by single crystal X-ray diffraction and was further investigated by FT-IR spectroscopy and magnetic measurements. The compound crystallizes in the monoclinic system, S.G: P21/c [a = 7.358(1) Å, b = 7.378(2) Å, c = 7.383(3) Å, β = 119.66(3)°, Z = 4, R1 = 0.0142, wR2 = 0.0429]. The structure can be described as a network of very distorted TiO6 octahedra, in which the Ti4+ ions are displaced from the centres of the octahedra, and slightly distorted PO4 tetrahedra. Half of the octahedral cavities are occupied by Co atoms. The other half of octahedral sites is vacant and favourable for the electrochemical insertion of lithium. The insertion of lithium was studied by galvanostatic charging and discharging between different voltage limits.  相似文献   

15.
The organo-templated iron(III) borophosphate (C4H12N2)3FeIII6(H2O)4[B6P12O50(OH)2]·2H2O was prepared under mild hydrothermal conditions (443 K). The crystal structure was determined from single-crystal X-ray data at 295 K (orthorhombic, Pbca (No. 61), Z=4, a=17.8023(7) Å, b=16.1037(5) Å, c=19.1232(6) Å, V=5482.3(3) Å3, R1=0.055, wR2=0.104, 6576 observed reflections with I>2σ(I)) and contains a new type of borophosphate anion: a mixed open- and loop-branched zehner single chain, , built from heptamers [B2P5O21] interconnected by BO3(OH) tetrahedra sharing their third oxygen corners with additional (terminal) PO4 tetrahedra to form open branchings. The mixed open- and loop-branched single chains running along [0 0 1] are interconnected by three crystallographically independent iron coordination octahedra to form a 3D framework structure containing eight-membered ring channels running along [0 1 0] and cages, which are occupied by two crystallographically independent piperazine cations and H2O molecules. The displacement parameters of C and N atoms in the piperazine cations are dramatically influenced by the strength of the hydrogen bond reflecting the shape of the cavities. The magnetic investigations indicate the existence of antiferromagnetic interactions as the major components. A narrow hysteresis at low temperatures indicates a weak ferromagnetic component, due to a non-cancellation of spins.  相似文献   

16.
A new titanium oxyphosphate Mg0.50TiO(PO4) has been synthesized and characterized by several physical techniques: X-ray diffraction, 31P MAS-NMR, Raman diffusion, infrared absorption and diffuse reflectance spectroscopy. It crystallizes in the monoclinic system with unit cell parameters: a = 7.367(9), b = 7.385(8), c = 7.373(9) Å, β = 120.23(1), with the space group P21/c (no. 14), Z = 4. The crystal structure has been refined by the Rietveld method using X-ray powder diffraction. The conventional R indices obtained are Rwp = 0.138, Rp = 0.096 and RB = 0.0459. The structure of Mg0.50TiO(PO4) consists of infinite chains of corner-shared [TiO6] octahedra parallel to the c-axis, crosslinked by corner-shared [PO4] tetrahedra. These infinite chains have alternating short (1.74 Å) and long (2.26 Å) TiO bonds and are similar to those found in titanium oxyphosphate MII0.50TiO(PO4) (M2+ = Fe2+, Co2+, Ni2+, Cu2+, Zn2+). The magnesium atom is located in an antiprism between two [TiO6] octahedra. 31P MAS NMR showed only a single 31P resonance line, in a good agreement with the crystal structure. Raman and IR spectra show strong bands respectively at 765 and 815 cm−1, attributed to the vibration of TiOTiO bonds in the infinite chains. The gap due to the Oxygen-Titanium(IV) charge transfer is 3.37 eV.  相似文献   

17.
A new iron phosphonate-oxalate [Fe(O3PCH3)(C2O4)0.5(H2O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO6 octahedra and O3PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P21/n (no. 14), a = 4.851(2) Å, b = 16.803(7) Å, c = 7.941(4) Å, β = 107.516(6)°, V = 617.2(5) Å3, Z = 4, R1 = 0.0337 and wR2=0.0874 for 1251 reflections [I > 2σ(I)]. Mössbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with TN = 30 K due to a weak spin canting.  相似文献   

18.
A chlorozincophosphate of the composition Zn(HPO4)Cl·[C4H10NO] has been synthesised under mild condition water medium in the presence of morpholine as organic template. Its unit cell is monoclinic P21/a with parameters a = 8.655(6) Å, b = 9.302(5) Å, c = 12.180(5) Å, β = 101.10(4)°, Z = 4 and V = 962.1(9) Å3. The structure was determinated by single crystal X-ray diffraction. The structure involves a network of ZnO3Cl and PO3(OH) tetrahedra forming macroanionic inorganic layers with four- and eight-membered rings. Charge balance is achieved by the protonated amine which is trapped in the interlayers space and interacts with the organic framework through hydrogen bonding. Solid state 31P and 13C MAS-NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

19.
Crystals of RbPrHP3O10 have been grown by the flux technique and characterized by single-crystal X-ray diffraction. RbPrHP3O10 crystallizes in the triclinic space group with lattice parameters: a = 7.0655(5), b = 7.7791(4), c = 8.6828(6) Å, α = 74.074(3), β = 74.270(3), γ = 82.865(2)°, V = 441.09(5) Å3, Z = 2. The crystal structure has been solved yielding a final R(F2) = 0.0443 and Rw(F2) = 0.1426 for 1955 independent reflections (Fo2 ≥ 2σ(Fo2)). The structure of RbPrHP3O10 consists of PrO8 polyhedra and P3O105− groups sharing oxygen atoms to form a two-dimensional framework; the PrO8 polyhedra form infinite chains by edge-sharing. Each Rb+ ion is bonded to 10 oxygen atoms, these ions are located between chains formed of (HP3O10)4−. The energies of the vibrational modes of the crystal were obtained from measurements of the infrared spectrum.  相似文献   

20.
The subsolidus phase equilibria of the Li2O-Ta2O5-B2O3, K2O-Ta2O5-B2O3 and Li2O-WO3-B2O3 systems have been investigated mainly by means of the powder X-ray diffraction method. Two ternary compounds, KTaB2O6 and K3Ta3B2O12 were confirmed in the system K2O-Ta2O5-B2O3. Crystal structure of compound KTaB2O6 has been refined from X-ray powder diffraction data using the Rietveld method. The compound crystallizes in the orthorhombic, space group Pmn21 (No. 31), with lattice parameters a = 7.3253(4) Å, b = 3.8402(2) Å, c = 9.3040(5) Å, z = 2 and Dcalc = 4.283 g/cm3. The powder second harmonic generation (SHG) coefficients of KTaB2O6 and K3Ta3B2O12 were five times and two times as large as that of KH2PO4 (KDP), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号