首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao Liu 《Fuel》2003,82(11):1427-1436
Coal combustion with O2/CO2 is promising because of its easy CO2 recovery, extremely low NOx emission and high desulfurization efficiency. Based on our own fundamental experimental data combined with a sophisticated data analysis, its characteristics were investigated. It was revealed that the conversion ratio from fuel-N to exhausted NO in O2/CO2 pulverized coal combustion was only about one fourth of conventional pulverized coal combustion. To decrease exhausted NO further and realize simultaneous easy CO2 recovery and drastic reduction of SOx and NOx, a new scheme, i.e. O2/CO2 coal combustion with heat recirculation, was proposed. It was clarified that in O2/CO2 coal combustion, with about 40% of heat recirculation, the same coal combustion intensity as that of coal combustion in air could be realized even at an O2 concentration of as low as 15%. Thus exhausted NO could be decreased further into only one seventh of conventional coal combustion. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx could be realized with this new scheme.  相似文献   

2.
Changdong Sheng  Yi Li 《Fuel》2008,87(7):1297-1305
The present paper was addressed to mineral transformations and ash formation during O2/CO2 combustion of pulverized coal. Four Chinese thermal coals were burned in a drop tube furnace to generate ashes under various combustion conditions. The ash samples were characterized with XRD analysis and 57Fe Mössbauer spectroscopy. The impacts of O2/CO2 combustion on mineral transformation and ash formation were explored through comparisons between O2/CO2 combustion and O2/N2 combustion. It was found that, O2/CO2 combustion did not significantly change the mineral phases formed in the residue ashes, but did affect the relative amounts of the mineral phases. The differences observed in the ashes formed in two atmospheres were attributed to the impact of the gas atmosphere on the combustion temperatures of coal char particles, which consequently influenced the ash formation behaviors of included minerals.  相似文献   

3.
Hao Liu  Ramlan Zailani 《Fuel》2005,84(16):2109-2115
This paper presents experimental results of a 20 kW vertical combustor equipped with a single pf-burner on pulverised coal combustion in air and O2/CO2 mixtures with NOx recycle. Experimental results on combustion performance and NOx emissions of seven international bituminous coals in air and in O2/CO2 mixtures confirm the previous findings of the authors that the O2 concentration in the O2/CO2 mixture has to be 30% or higher to produce matching temperature profiles to those of coal-air combustion while coal combustion in 30% O2/70% CO2 leads to better coal burnout and less NOx emissions than coal combustion in air. Experimental results with NOx recycle reveal that the reduction of the recycled NO depends on the combustion media, combustion mode (staging or non-staging) and recycling location. Generally, more NO is reduced with coal combustion in 30% O2/70% CO2 than with coal combustion in air. Up to 88 and 92% reductions of the recycled NO can be achieved with coal combustion in air and in 30% O2/70% CO2 respectively. More NO is reduced with oxidant staging than without oxidant staging when NO is recycled through the burner. Much more NO is reduced when NO recycled through the burner (from 65 to 92%) than when NO is recycled through the staging tertiary oxidant ports (from 33 to 54%). The concentration of the recycled NO has little influence on the reduction efficiency of the recycled NO with both combustion media—air and 30% O2/70% CO2.  相似文献   

4.
Based on experiments on desulfurization, CaSO4 decomposition, and a system approach using theoretical analysis, efficient in-furnace desulfurization in O2/CO2 combustion was investigated. The influence of combustion conditions and sorbent properties on system desulfurization efficiency was clarified. The global desulfurization efficiency was found to increase with O2 purity. The global desulfurization efficiency in a dry recycle was higher than that in a wet recycle. The global efficiency of in-furnace desulfurization decreased with initial O2 concentration. As the temperature increased, the global desulfurization efficiency increased first and then decreased due to the decomposition of CaSO4. In the temperature range investigated, the global desulfurization efficiency in O2/CO2 coal combustion was much higher than that of conventional coal combustion in air. The global desulfurization efficiency decreased with sorbent size. When the particle radius decreased to one quarter, the global desulfurization efficiency doubled, becoming as high as 80%. The global desulfurization efficiency was very different among the three sorbents investigated, whether in O2/CO2 combustion or in conventional air combustion. The global desulfurization efficiency increased in the order of Ca(OH)2, scallop, and limestone in O2/CO2 combustion, but in the order of scallop, Ca(OH)2, and limestone in conventional air combustion. Nevertheless, all three sorbents demonstrated much higher desulfurization efficiency in O2/CO2 combustion than in conventional air combustion.  相似文献   

5.
Hua Fei  Jun Xiang  Lushi Sun  Peng Fu  Gang Chen 《Fuel》2011,90(2):441-448
When predicting the variation of pore structure during O2/CO2 combustion of coal chars using the random pore model (RPM), it is impossible to calculate exactly the structure parameter ψ from the pore characteristics. The values of structure parameter ψ, which were calculated based on its fractal feature at various carbon conversions, should be almost constant. However, this investigation exhibited a drastic increase of ψ at the end of combustion reaction. In this work, structure parameter ψ of the RPM was modified according to the experimental analysis and a new model, fractal random pore model (FRPM), was constructed. Compared with other models such as RPM, discrete random pore model (DRPM), the Struis model (Model I) and the Liu model (Model II), it was found that fractal random pore model was more accurate to describe coal chars combustion, especially at higher conversions. Using the FRPM, O2/CO2 isotherm combustion of coal chars were analyzed at different temperatures.  相似文献   

6.
Pulverized coal combustion in O2/N2 and O2/CO2 environments was investigated with a drop tube furnace. Results present that the reaction rate and burn-out degree of O2/CO2 chars (obtained in O2/CO2 environments) are lower than that of O2/N2 chars (obtained in O2/N2 environments) under the same experimental condition. It indicates that a higher O2 concentration in O2/CO2 environment is needed to achieve the similar combustion characteristic to that in O2/N2 environment. The main differences between O2/N2 and O2/CO2 chars rely on the pore structure determined by N2 adsorption and chemical structure measured by FT-IR. For O2/CO2 char, the surface is thick and the pores are compact which contribute to the fragmentation reduction of particles burning in O2/CO2 environment. The organic functional group elimination rate from the surface of O2/CO2 chars is slower or delayed. The present research results might have important implications for further understanding the intrinsic kinetics of pulverized coal combustion in O2/CO2 environment.  相似文献   

7.
The decomposition behavior and mechanism of calcium sulfate in O2/CO2 pulverized coal combustion were studied in an entrained flow reactor. A reaction rate expression correlating the influence of various factors was proposed for CaS04 decomposition and it is able to predict CaS04 decomposition satisfactorily. Under the conditions investigated, the decomposition of CaS04 was found to be a regime of chemically controlled shrinking core reaction. A CO2-rich atmosphere enhances CaSO4 decomposition in absence of oxygen. CaSO4 particles have catalytic effect on formation of CO from CO2. A high SO2 concentration inhibits CaSO4 decomposition. The kinetics of CaSO4decomposition has obvious dependence on experimental facilities and conditions, whereas the activation energy has much lower dependence. The kinetics derived in this work is more appropriate for investigating desulfurization in O2/CO2 pulverized coal combustion because an entrained flow reactor has a much closer condition to that in O2/CO2 pulverized coal combustion than a TGA.  相似文献   

8.
A series of MnOx–CeO2 mixed oxide catalysts with different compositions prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of volatile organic compounds of chlorinated aromatics. MnOx–CeO2 catalysts with different ratios of Mn/Ce + Mn were found to possess high catalytic activity in the catalytic combustion of CB, and MnOx(0.86)–CeO2 was identified as the most active catalyst, on which the temperature of complete combustion of CB was 254 °C. Effects of systematic variation of reaction conditions, including space velocity and inlet CB concentration on the catalytic combustion of CB were investigated. Additionally, the stability and deactivation of MnOx–CeO2 catalysts were studied by various characterization methods and other assistant experiments. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present a stable high activity, which is related to their high ability to remove the adsorbed Cl species and a large amount of active surface oxygen.  相似文献   

9.
The O2/CO2 coal combustion technology is an innovative combustion technology that can control CO2, SO2 and NOx emissions simultaneously. Calcination and sintering characteristics of limestone under O2/CO2 atmosphere were investigated in this paper. The pore size, the specific pore volume and the specific surface area of CaO calcined were measured by N2 adsorption method. The grain size of CaO calcined was determined by XRD analysis. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere are less than that of CaO calcined in air at the same temperature. And the pore diameter of CaO calcined in O2/CO2 atmosphere is larger than that in air. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere increase initially with temperature, and then decline as temperature exceeds 1000 °C. The peaks of the specific pore volume and the specific surface area appear at 1000 °C. The specific surface area decreases with increase in the grain size of CaO calcined. The correlations of the grain size with the specific surface area and the specific pore volume can be expressed as L = 744.67 + 464.64 lg(1 / S) and L = − 608.5 + 1342.42 lg(1 / ε), respectively. Sintering has influence on the pore structure of CaO calcined by means of influencing the grain size of CaO.  相似文献   

10.
MnOx–CeO2 mixed oxide catalysts prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of chlorinated aromatic volatile organic compounds (CVOCs). MnOx–CeO2 catalysts with the different ratio of Mn/Ce + Mn were found to possess high catalytic activity for catalytic combustion of CB, and MnOx(0.86)–CeO2 was the most active catalyst, on which the complete combustion temperature (T90%) of chlorobenzene was 236 °C. The stability of MnOx–CeO2 catalysts in the CB combustion was investigated. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present high stable activity, which is related to their high ability to remove Cl species adsorbed and a large amount of active surface oxygen.  相似文献   

11.
Selective catalytic oxidation of hydrogen in the presence of hydrocarbons was studied in a fixed bed quartz reactor, over 3 wt%Au/TiO2 and 5 wt%Au/TiO2 catalysts. This reaction can be utilised in the production of light alkenes via catalytic dehydrogenation, providing in situ heat to the endothermic dehydrogenation reaction and simultaneously removing a fraction of the produced hydrogen. It is important to avoid the non-selective combustion of the hydrocarbons in the mixture. Both 3 wt%Au/TiO2 and 5 wt%Au/TiO2 are active for the combustion of hydrogen, but in a gas mixture with propane and oxygen the selectivity is dependent upon the feed ratio of hydrogen and oxygen. At 550 °C, with propane present, no carbon oxides are formed when the H2:O2 ratio is four, but at lower ratios some CO2 and some CO is formed.  相似文献   

12.
Eddy H. Chui  Mark A. Douglas  Yewan Tan 《Fuel》2003,82(10):1201-1210
The motivation of this research is to develop practical oxy-coal combustion techniques in order to facilitate the conversion of coal-fired utility power plants so as to recover a CO2 rich flue gas stream for use and/or sequestration. The objective of this study is to ascertain the applicability and accuracy of a modeling tool to assist with future pilot scale oxy-fuel combustion experiments and burner scale-up studies. Two modes of oxy-coal combustion, O2 enriched air (OEA) and recycled flue gas (RFG), were experimentally tested in a 0.3 MWth pilot-scale combustor using a western Canadian sub-bituminous coal. The computational fluid dynamic tool was utilized to model the combustion, heat transfer and pollutant formation characteristics of these test cases and to examine the impact due to changes in the combustion medium, burner swirl and burner configuration. The model provided insights for the observed variation in NOx production among the test cases: the dramatic increase in the OEA mode, the drop at higher burner swirl settings and the surprisingly small reduction in the RFG mode. Overall the model results compared well with measured data in all test cases and established confidence in using the model to explore new design concepts for oxy-coal combustion.  相似文献   

13.
The catalytic activity and long-term stability of 2% Pd/LaMnO3-ZrO2 catalysts for natural gas combustion were deeply investigated. The catalyst, prepared via solution combustion synthesis, was completely characterized (XRD, BET, FESEM/EDS, TPC/TPD/TPR and FT-IR analysis) in the fresh status, and in the aged one, after prolonged treatment under hydro-thermal ageing and S-compounds poisoning (up to 3 weeks of hydro-thermal treatment at 800 °C under a flow of domestic boiler exhaust gases typical composition of 9% CO2, 18% H2O, 2% O2 in N2, including 200 ppmv of SO2). An increased catalytic activity towards NG combustion with ageing was detected: the T50, in fact, got lowered from 570 (fresh sample) to 465 °C (after 3 weeks ageing). Highly dispersed Pd centers were predominant on fresh catalyst. Upon ageing, oxygen covered Pd metal particles formed, at the expense of dispersed cationic and zerovalent Pd atoms. The increase in the catalytic activity was associated to the phase modification occurring in the bulk support, where Mn oxides, active towards CH4 combustion, segregated. Moreover, bands due to sulfate species were detected in aged samples: IR analysis showed that Pd atoms did not interact significantly with these species. The bands of sulfate species decreased in intensity after 3 weeks ageing, likely mostly due to sintering of the catalyst, with the corresponding decrease in the surface area.  相似文献   

14.
Rahul D. Solunke 《Fuel》2011,90(2):608-617
Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO2-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H2S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO2 production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO2 capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.  相似文献   

15.
The combustion of coal in a mixture of pure O2 and recycled flue gas is one variant of a novel combustion approach called oxy-fuel combustion. With the absence of N2, this approach leads to a flue gas stream highly enriched in CO2. For many applications, this flue gas stream can then be compressed and sequestered without further separation. As a result, oxy-fuel combustion is an attractive way to capture CO2 produced from fossil fuel combustion. When coal is burned in this O2 and CO2 rich environment, its combustion characteristics can be very different from conventional air-fired combustion. In CETC-O, a vertical combustor research facility has been used in the past years to investigate the combustion characteristics of several different coals with this variant of oxy-fuel combustion. This included flame stability, emissions of NOx, SOx and trace elements, heat transfer, in-furnace flame profiles and flue gas compositions. This paper will report some of the major findings obtained from these research activities.  相似文献   

16.
The effect of preparation method on MnO x –CeO2 mixed oxide catalysts for methane combustion at low temperature was investigated by means of BET, XRD, XPS, H2-TPR techniques and methane oxidation reaction. The catalysts were prepared by the conventional coprecipitation, plasma and modified coprecipitation methods, respectively. It was found that the catalyst prepared by modified coprecipitation was the most active, over which methane conversion reached 90% at a temperature as low as 390 °C. The XRD results showed the preparation methods had no effect on the solid solution structure of MnO x –CeO2 catalysts. More Mn4+ and richer lattice oxygen were found on the surface of the modified coprecipitation prepared catalyst with the help of XPS analysis, and its reduction and BET surface area were remarkably promoted. These factors could be responsible for its higher activity for methane combustion at low temperature.  相似文献   

17.
Catalytic combustion of ethyl acetate was investigated over various CeO2-supported precious metal catalysts prepared by impregnation method, and the effect of reduction treatment on the activity was examined. Among the catalysts tested, Ru/CeO2 achieved the highest activity for ethyl acetate combustion, and the activity was almost unchanged by the heat treatment in a hydrogen atmosphere. In the cases of Pt/CeO2, Pd/CeO2, and Rh/CeO2, the catalytic activity was enhanced by the reduction treatment at 400 °C, though the activity of the reduced catalysts was still inferior to that of Ru/CeO2. It was confirmed by temperature-programmed reduction that the reduction of the ruthenium species was initiated at the lowest temperature among the CeO2-supported precious metals. The precious metal species reducible at lower temperatures should be responsible for the high activity in the complete oxidation of ethyl acetate.  相似文献   

18.
Jyh-Cherng Chen  Jian-Sheng Huang 《Fuel》2007,86(17-18):2824-2832
For mitigating the emission of greenhouse gas CO2 from general air combustion systems, a clean combustion technology O2/RFG is in development. The O2/RFG combustion technology can significantly enhance the CO2 concentration in the flue gas; however, using almost pure oxygen or pure CO2 as feed gas is uneconomic and impractical. As a result, this study proposes a modified O2/RFG combustion technology in which the minimum pure oxygen is mixed with the recycled flue gas and air to serve as the feed gas. The effects of different feed gas compositions and ratios of recycled flue gas on the emission characteristics of CO2, CO and NOx during the plastics incineration are investigated by theoretical and experimental approaches.Theoretical calculations were carried out by a thermodynamic equilibrium program and the results indicated that the emissions of CO2 were increased with the O2 concentrations in the feed gas and the ratios of recycled flue gas increased. Experimental results did not have the same trends with theoretical calculations. The best feed gas composition of the modified O2/RFG combustion was 40% O2 + 60% N2 and the best ratio of recycled flue gas was 15%. As the O2 concentration in feed gas and the ratio of recycled flue gas increased, the total flow rates and pressures of feed gas reduced. The mixing of solid waste and feed gas was incomplete and the formation of CO2 decreased. Moreover, the emission of CO was decreased as the O2 concentration in feed gas and the ratio of recycled flue gas increased. The emission of NOx gradually increased with rising the ratio of recycled flue gas at lower O2 concentration (<40%) but decreased at higher O2 concentration (>60%).  相似文献   

19.
An experimental strategy was developed to obtain Si—Al—Zr transparent sols via the sol-gel process. The sol was prepared from Al(OBus)3 (OBus: C2H5CH(CH3)O), Zr(OPrn)4 (OPrn: OCH2CH2CH3) and Si(OEt)4. The chelating agents acetylacetone (2, 4 pentanedione, acacH), and itaconic anhydride (2-methylenesuccinic anhydride, anhH) were employed separately to stabilize Al and Zr precursors in order to control their chemical reactivity, avoiding precipitation. In all cases a prehydrolyzed tetraethyl orthosilicate (TEOS) sol was the Si source. We use the Partial Charge Model as a theoretical indication of the stabilization of the Al and Zr species derived from the reaction with anhH and acacH. The sols were polymerized at room temperature (293 K) to obtain gels and these were dried and calcined at 673, 773 and 873 K in air. The characterization techniques were Small Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermal Gravimetric (TGA) and Differential Thermal Analyses (DTA). The porosity and surface area of solids calcined at 673, 773 and 873 K were determined by N2 adsorption/desorption isotherms. The corresponding average pore diameter was evaluated using the methods BJH, HK and DA. These models were used because all together cover the full range of the pore size.  相似文献   

20.
Different Ni-based oxygen carriers were prepared by dry impregnation using γ-Al2O3 as support. The reactivity, selectivity during methane combustion, attrition rate and agglomeration behavior of the oxygen carriers were measured and analyzed in a thermogravimetric analyzer and in a batch fluidized bed during multi-cycle reduction-oxidation tests.Ni-based oxygen carriers prepared on γ-Al2O3 showed low reactivity and low methane combustion selectivity to CO2 and H2O, because most of the impregnated NiO reacted to NiAl2O4. To avoid or to minimize the interaction of NiO with alumina some modifications of the support via thermal treatment or chemical deactivation with Mg or Ca oxides were analyzed. Thermal treatment of γ-Al2O3 at 1150 °C produced the phase transformation to α-Al2O3. Ni-based oxygen carriers prepared on α-Al2O3, MgAl2O4, or CaAl2O4 as support showed very high reactivity and high methane combustion selectivity to CO2 and H2O because the interaction between the NiO and the support was decreased. In addition, these oxygen carriers had very low attrition rates and did not show any agglomeration problems during operation in fluidized beds, and so, they seem to be suitable for the chemical-looping combustion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号