首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects--non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.  相似文献   

2.
All self-assembled nanostructures, like carbon nanotubes, exhibit structural imperfections that affect their electronic and mechanical properties and constitute a serious problem for the development of novel electronic nanodevices. Very common defects in nanotubes are pentagon-heptagon pairs, in which the replacement of four hexagons by two pentagons and two heptagons disrupts the perfect hexagonal lattice. In this work, we demonstrate that these defects can be eliminated efficiently with the help of femtosecond laser pulses. By performing nonadiabatic molecular dynamics simulations, we show that in the laser-induced electronic nonequilibrium the pentagon-heptagon pair is transformed back into four hexagons without producing any irreversible damage to the rest of the nanotube.  相似文献   

3.
We show, using ab initio total energy density functional theory, that the so-called Wigner defects, an interstitial carbon atom right beside a vacancy, which are present in irradiated graphite, can also exist in bundles of carbon nanotubes. Due to the geometrical structure of a nanotube, however, this defect has a rather low formation energy, lower than the vacancy itself, suggesting that it may be one of the most important defects that are created after electron or ion irradiation. Moreover, they form a strong link between the nanotubes in bundles, increasing their shear modulus by a sizable amount, clearly indicating its importance for the mechanical properties of nanotube bundles.  相似文献   

4.
Owing to their influence on electrons and phonons, defects can significantly alter electrical conductance, and optical, mechanical and thermal properties of a material. Thus, understanding and control of defects, including dopants in low-dimensional systems, hold great promise for engineered materials and nanoscale devices. Here, we characterize experimentally the effects of a single defect on electrons and phonons in single-wall carbon nanotubes. The effects demonstrated here are unusual in that they are not caused by defect-induced symmetry breaking. Electrons and phonons are strongly coupled in sp(2) carbon systems, and a defect causes renormalization of electron and phonon energies. We find that near a negatively charged defect, the electron velocity is increased, which in turn influences lattice vibrations locally. Combining measurements on nanotube ensembles and on single nanotubes, we capture the relation between atomic response and the readily accessible macroscopic behaviour.  相似文献   

5.
We show that the number of concentric graphene cylinders forming a carbon nanotube can be found by squeezing the tube between an atomic force microscope tip and a silicon substrate. The compressed height of a single-walled nanotube (double-walled nanotube) is approximately two (four) times the interlayer spacing of graphite. Measured compression forces are consistent with the predicted bending modulus of graphene and provide a mechanical signature for identifying individual single-walled and double-walled nanotubes.  相似文献   

6.
Herein, we investigate the reactivity of perfect and defective single-wall carbon nanotubes (SWCNTs) with the SH group using first principle periodic calculations. The presence of Stone–Wales (SW) defect sites significantly increases the reactivity of SWCNTs against the thiol group. The most reactive site for the addition of the SH radical is the single vacancy defect; the sulfur atom reconstructs the SWCNT framework and the hydrogen atom becomes attached to a carbon atom. The cluster model calculations performed for perfect SWCNTs confirmed a very low reactivity with the thiol group, even for the small diameter and metallic SWCNTs. The reaction between the perfect SWCNT and SH results thermodynamically unfavorable. The different reactivities observed for perfect and defective SWCNTs suggest that the SH group can be employed to perform a chemical labeling of the defect sites present in carbon nanotubes. The SH radical group is quite unique because, even though it has an unpaired electron, it does not react with sp 2 carbon frameworks, unless they have defects or curvature similar to C60. The results are discussed in terms of the recent experimental investigations about thiolated SWCNTs. We were able to explain the Transmission Electron Microscopy images of thiolated nanotubes and the lack of reactivity at the tips. Finally, we discuss a possible route to synthesize sulfur-doped SWCNTs using thiol groups and their electronic properties.  相似文献   

7.
Im J  Kim Y  Lee CK  Kim M  Ihm J  Choi HJ 《Nano letters》2011,11(4):1418-1422
In metallic carbon nanotubes with defects, the electric current flow is expected to have characteristic spatial patterns depending on the nature of the defects. Here, we show, using first-principles transport calculations, that locally rotating loop currents in nanometer scale can be generated near defects in carbon nanotubes by quantum interference of conducting and quasi-bound states of electrons. The loop currents appear at energies near transmission dips, having opposite directions at lower- and higher-energy sides of the transmission dips and disappearing exactly at the centers of the dips. Temporal modulations of gate voltage around a transmission dip can produce oscillating magnetic dipoles, inducing magnetic fields that reflect characteristics of defects. This generation of loop currents and magnetic dipoles by quantum interference can generally occur in any nanostructure and it is potentially useful for novel electronic and magnetic nanodevices.  相似文献   

8.
A first-principles study of single-walled carbon nanotubes with bamboo-shape (BS) and pentagon-pentagon fusion defects was conducted. Sharp resonances occur on the BS-nanotubes as strong density of electronic states (DOS) localized at carbon atoms adjacent to the partitions, while at the partition the localized DOS was greatly depleted. A strong defect state at -0.1 eV below the Fermi level was generated and the band gap was narrowed for BS-(10, 0) nanotube. Sharp resonant states are observed in the valence and conduction bands of BS-(12, 0) nanotube. The resonant states are attributed to the pentagon defects as exemplified by the study of a (5, 5) nanotube with pentagon-pentagon fusion ring. The high chemical reactivity of the topological defects of the BS-nanotubes is correlated to the presence of localized resonant states.  相似文献   

9.
In this paper, (10, 0) zigzag nanotubes and (6, 6) armchair nanotubes are considered to investigate the effects of randomly distributed vacancy defects on mechanical behaviors of single-walled carbon nanotubes. A spatial Poisson point process is employed to randomly locate vacancy defects on nanotubes. Atomistic simulations indicate that the presence of vacancy defects result in reducing nanotube strength but improving nanotube bending stiffness. In addition, the studies of nanotube torsion indicate that vacancy defects prevent nanotubes from being utilized as torsion springs.  相似文献   

10.
A method for the non-destructive purification of single-walled carbon nanotubes (SWNTs) using classical coordination chemistry to remove the metal catalyst has been developed. In preliminary tests, the conductivity of films based on the resulting SWNTs was markedly better than that of films prepared from SWNTs purified by treatment with oxidizing acid solutions. The transparent and conducting SWNT films have potential applications in optoelectronic devices.  相似文献   

11.
Tunvir K  Kim A  Nahm SH 《Nanotechnology》2008,19(6):065703
The tensile behavior of single-walled nanotubes (SWNTs) having two defects (vacancy or Stone-Wales) positioned next to each other was simulated in this study to investigate the influence of the spatial arrangement of defects on the mechanical properties. The simulations were performed using classical molecular dynamics (MD) at the atomic scale. Two neighboring vacancy defects reduced the failure strength as much as 46% and the failure strain as much as 80% in comparison with those of pristine SWNTs, while two neighboring Stone-Wales defects reduced them as much as 34% and 70% respectively. SWNTs having two defects in the loading (axial) direction showed higher failure strength than SWNTs with defects perpendicular to the loading direction. For both types of defect, the closer the defects, the weaker the SWNTs. As result, the defect arrangement in the SWNT structure must be one of the key factors in determining its mechanical properties, as well as the population of defects.  相似文献   

12.
以碳纳米管(CNTs)作"种子",液体石蜡和三聚氰胺分别作碳源和碳/氮源,利用爆炸辅助化学气相沉积法在CNTs"种子"上合成出新的CNTs和氮掺杂碳纳米管(CNx).透射电镜(TEM)和电子能量损失谱(EELS)测试表明:新合成的CNTs具有空心管状结构,而CNx呈竹节状且氮的原子分数高达17.3%.CNTs"种子"的作用归因于其端部的纳米级弯曲和开放性边缘具有吸附并外延Cn/CN物种的功能.  相似文献   

13.
Silica-coated multiwalled carbon nanotubes (MWCNTs) have been prepared by the sol–gel polymerization of tetraethoxysilane (TEOS) in the presence of the acid-oxidized MWCNTs at room temperature, followed by oxidizing the MWCNTs templates at high temperature in air to produce hollow silica nanotubes. The thickness and architectures of silica shell were well controlled by rationally adjusting the concentration of TEOS, and by adding cationic surfactant as a structure-directing agent. These results also give a clear answer to prove the fact that the structures of spherical silica particles can be fully “copied” to the coating shell and the wall of silica nanotubes when prepared by the same method as the synthesis of silica particles in the presence of templates.  相似文献   

14.
Native point defects control many aspects of semiconductor behavior. Such defects can be electrically charged, both in the bulk and on the surface. This charging can affect numerous defect properties such as structure, thermal diffusion rates, trapping and recombination rates for electrons and holes, and luminescence quenching rates. Charging also introduces new phenomena such as nonthermally photostimulated diffusion, thereby offering distinctive mechanisms for defect engineering. The present work incorporates the first comprehensive account of semiconductor defect charging, identifying correspondences and contrasts between surfaces and the bulk as well as among semiconductor classes (group IV, groups III–V, and metal oxides). For example, small lattice parameters, close-packed unit cells, and basis atoms with large atomic radii all inhibit the formation of ionized interstitials and antisites. The charged defects that exist in III–V and oxide semiconductors can be predicted with surprising accuracy from the chemical potential and oxygen partial pressure of the ambient. The symmetry-lowering relaxations, formation energies, and diffusion mechanisms of bulk and surface defect structures often depend strongly on charge state with similar qualitative behavior, although for a given material surface defects do not typically take on the same configurations or range of stable charge states as their counterparts in the bulk.  相似文献   

15.
Divacancies in graphene and carbon nanotubes   总被引:1,自引:0,他引:1  
Divacancies are among the most important defects that alter the charge transport properties of single-walled carbon nanotubes (SWNT), and we here study, using ab initio calculations, their properties. Two structures were investigated, one that has two pentagons side by side with an octagon (585) and another composed of three pentagons and three heptagons (555777). We investigate their stability as a function of tube diameter, and calculate their charge transport properties. The 585 defect is less stable in graphene due to two broken bonds in the pentagons. We estimate that the 555777 becomes more stable than the 585 for a diameter of about 40 A (53 A) for an armchair (zigzag) SWNTs, indicating that they will prevail in large diameter multiwalled carbon nanotubes and graphene ribbons.  相似文献   

16.
Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures--from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes--regardless of their diameters--to form new nanotube structures.  相似文献   

17.
Ferroelectric ordering in ice nanotubes confined in carbon nanotubes   总被引:1,自引:0,他引:1  
Luo C  Fa W  Zhou J  Dong J  Zeng XC 《Nano letters》2008,8(9):2607-2612
The ice nanotubes with odd number of side faces formed inside carbon nanotubes (CNTs) are found to exhibit spontaneous electric polarizations along their tube axes by means of molecular dynamics simulations. The physical mechanism underlying the quasi-one-dimensional (Q1D) ferroelectricity is an interplay between the Q1D geometrical confinement of CNTs and the distinct orientational ordering of the hydrogen bonds dictated by the "ice rule". This mechanism is fundamentally different from the conventional one seen in three-dimensional ferroelectric (FE) materials or in two-dimensional FE ice films. In addition, it is found that vacancies in the ice nanotubes can induce a net polarization normal to the tube axis.  相似文献   

18.
Kuo WS  Lu HF 《Nanotechnology》2008,19(49):495710
A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The?EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed.  相似文献   

19.
Jin C  Suenaga K  Iijima S 《Nano letters》2008,8(4):1127-1130
Activities of vacancy defects in carbon nanotubes have been directly monitored by in situ high-resolution transmission electron microscopy at elevated temperatures. Adatom-vacancy pair defects are first prolific due to the knock-on damage, and then the induced vacancies indeed grow up to 1-2 nm in the size by the following Joule heating. Surprisingly, these large vacancies, or "holes", tend to migrate and coalesce with each other to form even larger ones. It suggests that the activation barrier has been substantially lowered due to the contributions of an electromigration and/or irradiation effect.  相似文献   

20.
The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号