首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A numerical simulation has been performed for the investigation of flow and heat transfer characteristics of a film cooling system injected through a hole with compound angle orientation. The finite volume method is employed to discretize the governing equations based on the non-orthogonal coordinate with non-staggered variable arrangement. In order to analyze flow and heat transfer characteristics, velocity, temperature, aerodynamic loss coefficient, skin friction and vorticity are calculated with the variation of the skew angle. The maximum longitudinal vorticity and aerodynamics loss depend strongly on the skew angle. For the symmetric case of β=0 deg, a pair of counter-rotating vortices are formed and the maximum value of the film cooling effectiveness has appeared in the center plane where the skin friction is the minimum. For the skew angle of β=30 deg and above, only one strong counter-clockwise vortex remains in the downstream region and the maximum value of the film cooling effectiveness are obtained on the right side of the vortex. The predicted results for the film cooling effectiveness show good agreements with previous experimental data except the near-hole region.  相似文献   

2.
The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.  相似文献   

3.
采用非结构化网格和Realizablek-ε紊流模型,求解三维N-S方程,对带肋横流通道中肋的角度不同情况下,外表面气膜冷却换热特性进行了数值模拟。具体分析了肋与横流流动方向成60°、90°、120°时对气膜冷却外表面换热系数的影响。结果表明:横流及肋的存在使通道流场变得非常复杂,肋角度的变化对气膜孔内及出口气体流动有较大影响;肋角度的变化还改变了外表面换热系数的分布,肋角度为120°时外表面换热系数最大,60°次之,90°最小。  相似文献   

4.
致密多孔层板冷却结构研究   总被引:2,自引:0,他引:2  
应用FLUENT软件对内部绕流形式不同的7种层板结构进行流动与换热的耦合计算,分析扰流柱、冲击孔、气膜孔之间的排布方式以及堵塞比等参数对层板冷却效率与相对压力损失的影响规律。研究表明,层板结构以冲击孔和气膜孔呈现长菱形分布、扰流柱呈梭子形排布的方式较好,压力损失小,综合冷却效率可以提高10%左右;在进气流量相同的情况下,不同的层板结构压力损失相差不大,压力损失主要发生在从环腔经气膜壁进入火焰筒流出的过程中;增加扰流柱的数量或者是增大扰流柱的直径都会带来堵塞比的增大,层板的相对压力损失会随之增加,综合冷却效率增大,一定程度上强化了换热。  相似文献   

5.
Thermal fields downstream of the film-cooling jets injected through compound angle holes in a row have been measured with variations of the orientation angle and the blowing ratio. Detailed temperature distributions within the heated jets are reported for four orientation angles of 0 deg, 30 deg, 60 deg and 90 deg with three blowing ratios of 0.5, 1.0 and 1.5. The inclination angle, span-to-diameter ratio and length-to-diameter of the injection holes are fixed at 30 deg, 3.0 and 4.0, respectively, throughout the experiments. The result shows that the increase of the orientation angle results in uniform spanwise film coverage and improved film-cooling performance. The compound angle effects are found to be dominant in the case that the orientation angle is larger than 60 deg, especially when the blowing ratio is higher than unity.  相似文献   

6.
Several important parameters, such as liquid mass flux, droplet size distribution, droplet velocity, and heating target conditions (roughness and surface temperature) are involved in the industrial spray cooling heat transfer process. In this study, we investigated the effect of liquid mass flux, heating target roughness, and the droplet size on the droplet wall direct contact heat transfer in spray cooling phenomena. Three different conditions of surface roughness were investigated. The measurement of test surface temperature was performed using a non-intrusive method, i. e., using an infrared thermometer. The droplet size distribution of water spray was measured with Malvern 2600. The results indicated that the most influential parameters were the liquid mass flux and the surface roughness. The droplet size and the velocity played a less important role in the direct contact heat transfer because the interactions between droplets were very strong in a dense spray. The smooth surface showed the highest heat transfer among the surfaces tested. At high air pressure ([7] kPa), however, the degree of roughness did not affect much the heat transfer rate.  相似文献   

7.
用作图法求解了气膜冷却壁面的热平衡方程。计算方法中引用了本文作者最近做出的绝热壁面恢复温度的有效温比实验公式。算出了气膜冷却壁面的辐射热流量、气膜冷却热流量,外壁对流冷却和外壁辐射散热等。并用作图法求出了气膜冷却壁面的平衡温度和气膜冷却效率。有效温比、换热系数、气体黑度系数等都可用本文提供的图表直接查找。  相似文献   

8.
排尘孔涡轮冷却叶片叶顶流动与传热研究   总被引:2,自引:0,他引:2  
涡轮叶片叶顶排尘孔用于清除冷气中掺杂的尘粒,以保证气膜孔和冲击孔的可靠工作,但排尘孔射流引起叶顶流动和传热问题。采用参数化方法建立有、无排尘孔涡轮冷却叶片几何模型,基于包含叶片主体、主燃气通道和三腔回流式内冷却通道的全局模型,采用流热耦合数值分析,开展排尘孔对涡轮冷却叶片叶顶流动与传热问题的初步研究。研究结果表明,对比有、无排尘孔叶片,排尘孔射流可降低叶顶平均温度约25 K;冷却通道对流换热作用和叶顶排尘孔射流可使叶顶平面降温400~600 K,冷却效果与冷却通道冷气流量和尘孔结构在叶顶位置相关;排尘孔叶顶射流对叶顶间隙高温燃气泄漏具有阻碍作用,可以提高叶片总压恢复系数约0.5%~1.5%,随着冷气流量的增大,这种作用增强;尘孔结构设计应兼顾射流对叶顶流动与传热的共同影响。  相似文献   

9.
An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10-15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψcrit= 3-7%, Ψcrit=0.5-1.3%, respectively, in the range of heat fluxq” = 5-90kW/2  相似文献   

10.
In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower.  相似文献   

11.
非圆截面小通道内R113的流动沸腾换热特性   总被引:1,自引:0,他引:1  
针对非圆截面小通道流动沸腾换热研究报道较少的现状,以R113为工质,对4种不同水力直径的正方形、三角形截面小通道内的流动沸腾换热特性进行试验研究,试验参数范围:入口干度,过冷~1.0;质量流速400~ 3 300 kg/(m2?s);热流密度20~150 kW/m2,并将试验结果与相近水力直径的圆通道内流动沸腾试验结果进行了对比分析。试验结果表明:非圆小通道内饱和流动沸腾局部壁面温度与质量流速密切相关,并受热负荷与流动沸腾换热状况的影响;质量流速和壁面热负荷是非圆小通道内流动沸腾换热特性的主要影响因素;与相近水力直径的圆通道内流动沸腾试验数据对比显示,非圆截面小通道具有明显的强化传热作用。  相似文献   

12.
The effect of thermal radiation on convection heat transfer in flat-box type cooling channel of photovoltaic thermal system with tilt angle of 30 degree was studied by 3D numerical simulation under constant heat flux boundary condition. The temperature contours and velocity fields of fluid near the outlet were obtained. The variations of wall temperature and convection Nusselt number along flow direction for all the separate walls composing the cooling channel were compared and analyzed. The results show that due to thermal radiation, the deflection of the maximum velocity region to heated top wall, together with the asymmetry of temperature field is weakened. For natural convection, radiation promotes the formation of multi-vortices. For mixed convection, heat transfer on all the cooling channel walls is enhanced under the condition of lower heat flux while heat transfer on heated top wall is deteriorated when the heat flux is relative high. Also, pressure re-rising is promoted by thermal radiation.  相似文献   

13.
A slot film cooling technique has been used to protect a combustor liner from hot combustion gas. This method has been developed for gas turbine combustors. A ramjet combustor exposed to high temperature can be protected properly with a multi-slot film cooling method. An experimental study has been conducted to investigate the change of the first slot angle under recirculation flow and the influence of wiggle strip within a slot, which affects the film cooling effectiveness. The first slot angle has been changed to understand the effect of the injection angle on the film cooling effectiveness in a recirculation zone. The distribution of dimensionless temperature was obtained by a thermocouple rake to investigate the wiggle strip effect, and the adiabatic film cooling effectiveness on downstream wall was measured by a thermochromic liquid crystal (TLC) method. At the first slot position, the film cooling effectiveness decreases significantly because of the effects of recirculation flow. The lip angle of the first slot affects slightly on the film cooling effectiveness. The wiggle strip reinforces the structure of slot and keeps the uniform open area of slot. However, it induces three dimensional flows and enhances the flow mixing between the main flow and the injected slot flow. Therefore, the wiggle strip decreases slightly the overall film cooling effectiveness. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Kwanghoon Park received his M.S degree in Mechanical Engineering from Yonsei University, Seoul, Korea in 2007. He is currently working for an education of an officer as a drillmaster in Army Consolidated Logistics School. Kang Mo Yang joined the Republic of Korea Army in 2004. He is currently working towards the M.S. degree at the Department of Mechanical Engineering, Yonsei University. Keon Woo Lee received his M.S. degree in Mechanical Engineering from Yonsei University, Seoul, Korea in 2008. In 2008, he joined the Doosan heavy industries & Construction Co, LTD, where he is a member of the IGCC Business Team. Hyung Hee Cho received his PhD degree in Mechanical Engineering from University of Minnesota, Minneapolis, MN in 1992. In 1995, he joined the Department of Mechanical Engineering, Yonsei University, Seoul, Korea, where he is currently a full professor in the School of Mechanical Engineering. His research interests include heat transfer in turbomachineries, rocket/ramjet cooling as well as nanoscale heat transfer in thin films, and microfabricated thermal sensors. Hee Cheol Ham received his PhD degree in Mechanical Engineering from Yonsei University, Seoul, Korea in 2001. In 1984, he joined the Agency for Defense Development, Daejeon, Korea, where he is currently a Principal Researcher. Ki Young Hwang received his Ph.D. degree in Mechanical Engineering from Yonsei University, Seoul, Korea in 1994. In 1979, he joined the Agency for Defense Development, Daejon, Korea, where he is currently a principal researcher in the Airbreathing Propulsion Directorate.  相似文献   

14.
 为缓解柴油机活塞的过热问题,对冷却环道内的气液两相流动状态及传热特性进行了研究。根据计算流体力学方法确立柴油机冷却环道流动的湍流模型和相界面模型。采用有限元方法,建立冷却环道两相流仿真模型,针对柴油机不同的转速、油压和油温条件分别进行仿真计算,得出油液的体积率和平均换热系数随曲轴转角的变化规律。通过发动机喷流试验台的验证可知,冷却环道内两相流动状态的实验与仿真结果具有良好的匹配性。研究结果表明:喷油压力对油液体积率和平均换热系数的影响非常小;油体积率和平均换热系数的变化趋势不存在一致性;冷却环道的换热能力主要由油液黏度和振荡强度决定。  相似文献   

15.
In the present work turbulent film condensation of nonazeotropic binary mixtures inside a horizontal tube is studied theoretically. The combined heat and mass transfer involved is analyzed through an integral formulation of the continuity, momentum, energy and diffusion equations. As the mass velocity of refrigerant mixtures increases, the condensation heat transfer coefficient increases. The heat transfer coefficient becomes smaller at higher mass quality. As the mole fraction of the more volatile component in binary mixtures increases, the back-diffusion mass flux of the more volatile component reduces in the vapor. As a result the condensation heat transfer coefficient improves with the increase of the inlet mole fraction of the more volatile component especially in the upstream of condenser. The results of the present study show good agreement with the experimental data available.  相似文献   

16.
We report experimental data of boiling heat transfer of R-1234yf in horizontal small tubes. The experimental data obtained in the horizontal circular small tubes of 1.5 and 3.0 mm inner diameter, the lengths of 1000 and 2000 mm, the mass flux range from 200–650 kg/m2s, the heat flux range from 5–40 kW/m2 and saturation temperature of 10 and 15°C, was used to develop a modified correlation for the heat transfer coefficient. The flow pattern of the experimental data was mapped and analyzed with existing flow pattern maps. The heat transfer coefficient was also compared with some well-known correlations.  相似文献   

17.
This article is focused on the effects of the angle between lubricant entrainment velocity and sliding velocity on elastohydrodynamic film thickness distribution. Thin-film colorimetric interferometry was used to evaluate the film thickness distribution in smooth glass–steel contacts to provide basic data on the effects of the slide–roll ratio and the direction of sliding with respect to entrainment velocity. It was observed that as the sliding perpendicular to the entrainment velocity increased, the overall film thickness was reduced and asymmetry of the film profile with respect to the direction of the entrainment velocity increased. The asymmetry of the film profile with respect to the direction of the entrainment velocity increased with the entrainment speed or the overall film thickness. When the speed of the glass disk was larger than that of the steel ball, a dimple was formed even if there was a difference in direction between the entrainment and sliding velocities. A part of the dimple was exhausted from the elastohydrodynamic lubrication (EHL) conjunction as the angle between the entrainment and sliding velocities approached 90°.  相似文献   

18.
This research investigates the effects of piston cooling jet (PCJ) on the temperature and heat transfer of a piston. A numerical model was developed by using the computational fluid dynamic approach in which the fluid and solid domains of the piston were coupled in a three-dimensional space. Two-phase flow of oil and air was also simulated. This method was used to analyze the effects of oil velocity and piston position on the heat transfer coefficient at the bottom of the piston as the new outcomes of this study. For the experiment, combustion heat flux on the piston was simulated in a test rig, and numerical results were validated. The results showed a linear relation between the oil jet velocity and the average of heat transfer coefficient at the bottom of the piston, and a periodic correlation between the piston’s vertical position and the average of heat transfer coefficient. The average of the piston crown temperature could be reduced to about 70 K by using the PCJ system, but this cooling method could create 50 K temperature gradient in the piston.  相似文献   

19.
Direct immersion cooling has been considered as one of the promising methods to cool high power density chips. A fluorocarbon liquid such as FC-72, which is chemically and electrically compatible with microelectronic components, is known to be a proper coolant for direct immersion cooling. However, boiling in this dielectric fluid is characterized by its small value of the critical heat flux. In this experimental study, we tried to enhance the critical heat flux by increasing the nucleate boiling area in the heat spreader (Conductive Immersion Cooling Module). Heat flux of 2 MW/m2 was successfully removed at the heat source temperature below 78°C in FC-72. Some modified boiling curves at high heat flux were obtained from these modules. Also, the concept of conduction path length is very important in enhancing the critical heat flux by increasing the heat spreader surface area where nucleate boiling occurs.  相似文献   

20.
The heat transfer phenomenon occurring during stratified condensation inside an inclined tube is investigated theoretically and numerically. Differential equations governing the kinematic, dynamic, and thermal aspects for vapor condensation inside inclined tubes, which are derived from a thin film flow modeling, are solved simultaneously. These solutions are achieved by applying an explicit finite difference numerical method to predict the condensation heat transfer coefficient variations along the tangential and axial coordinates. The inclination angle is found to have a significant effect on condensation heat transfer coefficient inside inclined tubes. In addition, in accordance with the given physical and thermal condition of working fluids, there is a specific optimum inclination angle. In this study, the 30°–50° range from the horizontal position is found to be the range of the optimum inclination angle for achieving the maximum condensation heat transfer coefficient, with R134a, R141b, and R11 as the working fluids. The results of the present study are compared with experimental data, and a good agreement is observed between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号