首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

2.
Double-reduced-surface-field (RESURF) MOSFETs with $hbox{N}_{2}hbox{O}$ -grown oxides have been fabricated on the 4H-SiC $(hbox{000} bar{hbox{1}})$ face. The double-RESURF structure is effective in reducing the drift resistance, as well as in increasing the breakdown voltage. In addition, by utilizing the 4H-SiC $(hbox{000}bar{hbox{1}})$ face, the channel mobility can be increased to over 30 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, and hence, the channel resistance is decreased. As a result, the fabricated MOSFETs on 4H-SiC $( hbox{000}bar{hbox{1}})$ have demonstrated a high breakdown voltage $(V_{B})$ of 1580 V and a low on-resistance $(R_{rm ON})$ of 40 $hbox{m}Omega cdothbox{cm}^{2}$. The figure-of-merit $(V_{B}^{2}/R_{rm ON})$ of the fabricated device has reached 62 $hbox{MW/cm}^{2}$, which is the highest value among any lateral MOSFETs and is more than ten times higher than the “Si limit.”   相似文献   

3.
This letter reports on the fabrication and hole Schottky barrier $(Phi_{ rm B}^{rm p})$ modulation of a novel nickel (Ni)–dysprosium (Dy)-alloy germanosilicide (NiDySiGe) on silicon–germanium (SiGe). Aluminum (Al) implant is utilized to lower the $Phi_{rm B}^{rm p}$ of NiDySiGe from $sim$0.5 to $sim$ 0.12 eV, with a correspondingly increasing Al dose in the range of $ hbox{0}$$hbox{2}timeshbox{10}^{15} hbox{atoms}/ hbox{cm}^{2}$. When integrated as the contact silicide in p-FinFETs (with SiGe source/drain), NiDySiGe with an Al implant dose of $hbox{2}timeshbox{10}^{14} hbox{atoms}/ hbox{cm}^{2}$ leads to 32% enhancement in $I_{rm DSAT}$ over p-FinFETs with conventional NiSiGe contacts. Ni–Dy-alloy silicide is a promising single silicide solution for series-resistance reduction in CMOS FinFETs.   相似文献   

4.
High-electron mobility transistors (HEMTs) based on ultrathin AlN/GaN heterostructures with a 3.5-nm AlN barrier and a 3-nm $hbox{Al}_{2}hbox{O}_{3}$ gate dielectric have been investigated. Owing to the optimized AlN/GaN interface, very high carrier mobility $(sim!!hbox{1400} hbox{cm}^{2}/hbox{V}cdothbox{s})$ and high 2-D electron-gas density $(sim!!kern1pthbox{2.7} times hbox{10}^{13} /hbox{cm}^{2})$ resulted in a record low sheet resistance $(sim !!hbox{165} Omega/hbox{sq})$. The resultant HEMTs showed a maximum dc output current density of $simkern1pt$2.3 A/mm and a peak extrinsic transconductance $g_{m,{rm ext}} sim hbox{480} hbox{mS/mm}$ (corresponding to $g_{m,{rm int}} sim hbox{1} hbox{S/mm}$). An $f_{T}/f_{max}$ of 52/60 GHz was measured on $hbox{0.25} times hbox{60} muhbox{m}^{2}$ gate HEMTs. With further improvements of the ohmic contacts, the gate dielectric, and the lowering of the buffer leakage, the presented results suggest that, by using AlN/GaN heterojunctions, it may be possible to push the performance of nitride HEMTs to current, power, and speed levels that are currently unachievable in AlGaN/GaN technology.   相似文献   

5.
A linearization technique is proposed in which low-frequency second-order-intermodulation $({rm IM}_{2})$ is generated and injected to suppress the third-order intermodulation $({rm IM}_{3})$. The proposed linearization technique is applied to both a low-noise amplifier (LNA) and a down-conversion mixer in an RF receiver front-end (RFE) working at 900 MHz. Fabricated in a 0.18$ mu{hbox{m}}$ CMOS process and operated at 1.5 V supply with a total current of 13.1 mA, the RFE delivers 22 dB gain with 5.3 dB noise figure (NF). The linearization technique achieves around 20 dB ${rm IM}_{3}$ suppression and improves the RFE's ${rm IIP}_{3}$ from $-$ 10.4 dBm to 0.2 dBm without gain reduction and noise penalty while requiring only an extra current of 0.1 mA.   相似文献   

6.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

7.
4H-SiC bipolar Darlington transistors with a record-high current gain have been demonstrated. The dc forced current gain was measured up to 336 at 200 $hbox{W/cm}^{2}$ ( $J_{C} = hbox{35} hbox{A/cm}^{2}$ at $V_{rm CE} = hbox{5.7} hbox{V}$) at room temperature. The current gain exhibits a negative temperature coefficient and remains as high as 135 at 200 $^{circ}hbox{C}$. The specific on-resistance is 140 $hbox{m}Omegacdothbox{cm}^{2}$ at room temperature and increases at elevated temperatures. An open-emitter breakdown voltage $(BV_{rm CBO})$ of 10 kV was achieved at a leakage current density of $≪hbox{1} hbox{mA/cm}^{2}$. The device exhibits an open-base breakdown voltage $(BV_{rm CEO})$ of 9.5 kV. The high current gain of SiC Darlington transistors can significantly reduce the gate-drive power consumption with the same forward-voltage drop as that of 10-kV SiC bipolar junction transistors, thus making the device attractive for high-power high-temperature applications.   相似文献   

8.
New hydrogen-sensing amplifiers are fabricated by integrating a GaAs Schottky-type hydrogen sensor and an InGaP–GaAs heterojunction bipolar transistor. Sensing collector currents ( $I_{rm CN}$ and $I_{rm CH}$) reflecting to $hbox{N}_{2}$ and hydrogen-containing gases are employed as output signals in common-emitter characteristics. Gummel-plot sensing characteristics with testing gases as inputs show a high sensing-collector-current gain $(I_{rm CH}/I_{rm CN})$ of $≫hbox{3000}$. When operating in standby mode for in situ long-term detection, power consumption is smaller than 0.4 $muhbox{W}$. Furthermore, the room-temperature response time is 85 s for the integrated hydrogen-sensing amplifier fabricated with a bipolar-type structure.   相似文献   

9.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

10.
A low-power fully integrated low-noise amplifier (LNA) with an on-chip electrostatic-static discharge (ESD) protection circuit for ultra-wide band (UWB) applications is presented. With the use of a common-gate scheme with a ${rm g}_{rm m}$ -boosted technique, a simple input matching network, low noise figure (NF), and low power consumption can be achieved. Through the combination of an input matching network, an ESD clamp circuit has been designed for the proposed LNA circuit to enhance system robustness. The measured results show that the fabricated LNA can be operated over the full UWB bandwidth of 3.0 to 10.35 GHz. The input return loss $({rm S}_{11})$ and output return loss $({rm S}_{22})$ are less than ${-}8.3$ dB and ${-}9$ dB, respectively. The measured power gain $({rm S}_{21})$ is $11 pm 1.5$ dB, and the measured minimum NF is 3.3 dB at 4 GHz. The dc power dissipation is 7.2 mW from a 1.2 V supply. The chip area, including testing pads, is 1.05 mm$,times,$ 0.73 mm.   相似文献   

11.
Metamorphic pseudosubstrates of $hbox{In}_{0.15}hbox{Ga}_{0.85}hbox{Sb}$ are grown on p- and n-type GaSb substrates using $hbox{In}_{x} hbox{Ga}_{1 - x}hbox{Sb}$ buffer layers compositionally graded in steps of $x = hbox{0.03}$. Extensive material characterization was done on the metamorphic layers to determine the in-plane lattice constant, density of threading and misfit dislocations, and surface roughness by high-resolution X-ray diffraction, cross-sectional and plan-view transmission electron microscopy, and atomic force microscopy. This is followed by a regrowth of p-i-n and n-i-p device layers of $hbox{In}_{x}hbox{Ga}_{1 - x}hbox{Sb} (x = hbox{0.10})$, lattice matched with the underlying partially relaxed metamorphic layer. Hole $( beta)$ and previously unreported electron $(alpha)$ ionization coefficients, at room temperature and 90 $^{circ}hbox{C}$ , respectively, were extracted from these structures. The results show that $alpha ≫ beta$ for $ hbox{In}_{0.10}hbox{Ga}_{0.90}hbox{Sb}$. A semianalytic expression was used to extract the temperature-dependent parameters for further investigations on practical avalanche photodiodes.   相似文献   

12.
Performance degradation of n-MOSFETs with plasma-induced recess structure was investigated. The depth of Si recess $(d_{R})$ was estimated from the experiments by using Ar gas plasmas. We propose an analytical model by assuming that the damage layer was formed during an offset spacer etch. A linear relationship between threshold voltage shift $(Delta V_{rm th})$ and $d_{R}$ was found. Device simulations were also performed for n-MOSFETs with various $(d_{R})$. Both $vertDelta V_{rm th}vert$ and off-state leakage current increased with an increase in $d_{R}$ . The increase in $vertDelta V_{rm th}vert$ becomes larger for smaller gate length. The results from device simulations are consistent with the analytical model. These findings imply that the Si recess structure induced by plasma damage enhances $V_{rm th}$-variability in future devices.   相似文献   

13.
In this letter, we demonstrated dopant-segregated Schottky (DSS) p-MOSFET with gate-all-around silicon-nanowire (SiNW) channel of 10 nm in diameter. The DSS transistor shows improved performance as compared to a reference Schottky barrier (SB) transistor without dopant segregation. The DSS transistor shows $I_{rm ON}$ of 319 $mu hbox{A}/muhbox{m}$ at a low gate overdrive of $-$ 0.6 V, high $I_{rm ON}/I_{rm OFF}$ ratio $(sim!hbox{10}^{5})$, and short-channel performance with subthreshold slope $sim$90 mV/dec down to 100-nm gate length with relatively thick (6 nm) deposited gate oxide. The DSS transistor also shows significant reduction ( $sim!hbox{40}times$ lower) in the series resistance as compared to the SB transistor. The origin of the improved performance of the DSS is the thin dopant layer segregated at the nickel monosilicide/SiNW point contact which results in the enhanced hole injection at the source side and the suppressed electron injection at the drain side.   相似文献   

14.
Effects of silicon nitride (SiN) surface passivation by plasma enhanced chemical vapor deposition (PECVD) on microwave noise characteristics of AlGaN/GaN HEMTs on high-resistivity silicon (HR-Si) substrate have been investigated. About 25% improvement in the minimum noise figure $(NF_{min})$ (0.52 dB, from 2.03 dB to 1.51 dB) and 10% in the associate gain $(G_{rm a})$ (1.0 dB, from 10.3 dB to 11.3 dB) were observed after passivation. The equivalent circuit parameters and noise source parameters (including channel noise coefficient $(P)$, gate noise coefficient $(R)$, and their correlation coefficient $(C)$ ) were extracted. $P$ , $R$ and $C$ all increased after passivation and the increase of C contributes to the decrease of the noise figure. It was found that the improved microwave small signal and noise performance is mainly due to the increase of the intrinsic transconductance $(g_{{rm m}0})$ and the decrease of the extrinsic source resistance $(R_{rm s})$.   相似文献   

15.
The positive bias temperature instability (PBTI) characteristics of contact-etch-stop-layer (CESL)-strained $hbox{HfO}_{2}$ nMOSFET are thoroughly investigated. For the first time, the effects of CESL on an $hbox{HfO}_{2}$ dielectric are investigated for PBTI characteristics. A roughly 50% reduction of $V_{rm TH}$ shift can be achieved for the 300-nm CESL $hbox{HfO}_{2}$ nMOSFET after 1000-s PBTI stressing without obvious $ hbox{HfO}_{2}/hbox{Si}$ interface degradation, as demonstrated by the negligible charge pumping current increase ($≪$ 4%). In addition, the $hbox{HfO}_{2}$ film of CESL devices has a deeper trapping level (0.83 eV), indicating that most of the shallow traps (0.75 eV) in as-deposited $ hbox{HfO}_{2}$ film can be eliminated for CESL devices.   相似文献   

16.
Thin-film $hbox{HfO}_{2}$ is a promising gate dielectric material that will influence thermal conduction in modern transistors. This letter reports the temperature dependence of the intrinsic thermal conductivity and interface resistances of 56–200- $hbox{rm{AA}}$-thick $ hbox{HfO}_{2}$ films. A picosecond pump–probe thermoreflectance technique yields room-temperature intrinsic thermal conductivity values between 0.49 and 0.95 $ hbox{W}/(hbox{m}cdot hbox{K})$. The intrinsic thermal conductivity and interface resistance depend strongly on the film-thickness-dependent microstructure.   相似文献   

17.
This letter demonstrates a vertical silicon-nanowire (SiNW)-based tunneling field-effect transistor (TFET) using CMOS-compatible technology. With a $hbox{Si} hbox{p}^{+}{-}hbox{i}{-} hbox{n}^{+}$ tunneling junction, the TFET with a gate length of $sim$200 nm exhibits good subthreshold swing of $sim$ 70 mV/dec, superior drain-induced-barrier-lowering of $sim$ 17 mV/V, and excellent $I_{rm on} {-} I_{rm off}$ ratio of $sim!!hbox{10}^{7}$ with a low $I_{rm off} (sim!!hbox{7} hbox{pA}/muhbox{m})$. The obtained 53 $muhbox{A}/muhbox{m} I_{rm on}$ can be further enhanced with heterostructures at the tunneling interface. The vertical SiNW-based TFET is proposed to be an excellent candidate for ultralow power and high-density applications.   相似文献   

18.
In this letter, we investigate the effects of oxide traps induced by various silicon-on-insulator (SOI) thicknesses $({T}_{rm SOI})$ on the performance and reliability of a strained SOI MOSFET with SiN-capped contact etch stop layer (CESL). Compared to the thicker ${T}_{rm SOI}$ device, the thinner ${T}_{rm SOI}$ device with high-strain CESL possesses a higher interface trap $({N}_{rm it})$ density, leading to degradation in the device performance. On the other hand, however, the thicker ${T}_{rm SOI}$ device reveals inferior gate oxide reliability. From low-frequency noise analysis, we found that thicker ${T}_{rm SOI}$ has a higher bulk oxide trap $({N}_{rm BOT})$ density, which is induced by larger strain in the gate oxide film and is mainly responsible for the inferior TDDB reliability. Presumably, the gate oxide film is bended up and down for the p- and nMOSFETs, respectively, by the net stress in thicker ${T}_{rm SOI}$ devices in this strain technology.   相似文献   

19.
We studied submicrometer $(L_{G} = hbox{0.15} {-} hbox{0.25} mu hbox{m})$ gate-recessed InAlN/AlN/GaN high-electron mobility transistors (HEMTs) on SiC substrates with 25-nm $hbox{Al}_{2}hbox{O}_{3}$ passivation. The combination of a low-damage gate-recess technology and the low sheet resistance of the InAlN/AlN/GaN structure resulted in HEMTs with a maximum dc output current density of $I_{{rm DS}, max} = hbox{1.5} hbox{A/mm}$ and a record peak extrinsic transconductance of $g_{m, {rm ext}} = hbox{675} hbox{mS/mm}$. The thin $hbox{Al}_{2}hbox{O}_{3}$ passivation improved the sheet resistance and the transconductance of these devices by 15% and 25%, respectively, at the same time that it effectively suppressed current collapse.   相似文献   

20.
Newly proposed mobility-booster technologies are demonstrated for metal/high- $k$ gate-stack n- and pMOSFETs. The process combination of top-cut SiN dual stress liners and damascene gates remarkably enhances local channel stress particularly for shorter gate lengths in comparison with a conventional gate-first process. Dummy gate removal in the damascene gate process induces high channel stress, because of the elimination of reaction force from the dummy gate. PFETs with top-cut compressive stress liners and embedded SiGe source/drains are performed by using atomic layer deposition TiN/$ hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$ on (100) substrates. On the other hand, nFETs with top-cut tensile stress liners are obtained by using $hbox{HfSi}_{x}/hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$. High-performance n- and pFETs are achieved with $I_{rm on} = hbox{1300}$ and 1000 $muhbox{A}/muhbox{m} hbox{at} I_{rm off} = hbox{100} hbox{nA}/mu hbox{m}$, $V_{rm dd} = hbox{1.0} hbox{V}$, and a gate length of 40 nm, respectively.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号