首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron aluminides are ordered intermetallic alloys which offer good resistance to corrosion and sulfidation. At the same time, their Achilles' heel is low ductility at room temperature and sometimes they have poor mechanical properties. By means of mechanical alloying and spark plasma sintering (MA–SPS) it is possible to obtain bulk nanostructured iron aluminides which show high hardness and high yield stress.

In this work we present the production of nanostructured powders and their consolidation through spark plasma sintering. The inevitable use of methanol as processing control agent (PCA) leads to a supersaturation in carbon and oxygen of the milled powder and a consequent in-situ precipitation of carbides and oxides during SPS. The presence of carbides, oxides and a nanostructured matrix leads to high mechanical properties with hardness 5.20 ± 0.05 GPa and a yield stress of 1305 MPa.  相似文献   


2.
WC–12 wt.% Co grade cemented carbides doped with 0.9 wt.% VC, NbC or Cr3C2 grain growth inhibitor were consolidated by pulsed electric current sintering (PECS), also known as spark plasma sintering (SPS), in the solid state at 1240 °C for 2 min. The microstructure and properties of the PECS material grades are compared with those of pressureless sintered grades, liquid phase sintered at 1420 °C for 1 h. Microstructural and hardness characterization revealed that both the chemical composition and sintering technique play an important role on the WC grain growth and final mechanical properties. To obtain a nanometer sized WC–Co microstructure, it is essential to carefully select the grain growth inhibitor in addition to the application of a fast thermal densification cycle by means of spark plasma sintering.  相似文献   

3.
In this study we present the results on complex structural changes of the Co70Fe5Si10B15 amorphous alloy induced during heating in the temperature range between 20 and 1000 °C. The structural and phase transformation changes were correlated with DTA, XRD and SEM properties. It is shown that initial Co70Fe5Si10B15 alloy during heating undergoes complex crystallochemical changes. In the range between ambient temperature and near 400 °C, investigated alloy retains the solid-state amorphous properties. Prolonged heating induces complete transformation to crystalline solid state. The solid–solid amorphous to crystalline state transformation process is completed at 500 °C, when two nanocrystalline phase alloy systems are formed. Prolonged thermal treatment between 600 and 1000 °C, influenced further elemental segregation and phase transition. At 1000 °C, the composite material consisting of two FCC cobalt-rich alloys and a hexagonal unidentified alloy are formed.  相似文献   

4.
The La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) powders for intermediate temperature SOFC electrolyte have been synthesized by glycine-nitrate combustion process. The as-synthesized powders show almost pure perovskite phase. And then, the as-synthesized powders were sintered by SPS at 1300 °C to prepare electrolyte. The SEM, XRD and AC impedance were employed to characterize the microstructure, phase and electrical conductivities. Results show that the grain size is very fine, less than 1 μm, and the relative density of the pellet after sintering by SPS is about 94.7%. There is very little amount of secondary phases after SPS and the grain boundary and secondary phase resistance is very small. The electrolyte sintered by SPS shows higher conductivities than that sintered by conventional method at the same temperature. The activation energy at lower temperatures (400–700 °C) and higher temperatures (700–800 °C) is about 0.94 and 0.49 eV, respectively. Spark plasma sintering is a promising and effective method to sinter the LSGM electrolyte.  相似文献   

5.
D. Roy  S. Kumari  R. Mitra  I. Manna 《Intermetallics》2007,15(12):1595-1605
Multiphase Al65Cu20Ti15 intermetallic alloy matrix composite, dispersed with 10 wt.% of TiO2 nanoparticles, has been processed by mechanical alloying, followed by spark plasma sintering under pressure in the temperature range of 623–873 K. Differential scanning calorimetry and X-ray diffraction suggest that equilibrium crystalline phases evolve from the amorphous or intermediate crystalline phases. Transmission electron microscopy shows that the composite sintered at 873 K has partially amorphous microstructure, with dispersion of equilibrium, crystalline, intermetallic precipitates of Al5CuTi2, Al3Ti, and Al2Cu of 25–50 nm size, besides the TiO2. The composite sintered at 873 K exhibits little porosity, hardness of 5.6 GPa, indentation fracture toughness in the range of 3.1–4.2 MPa√m, and compressive strength of 1.1 GPa. Indentation crack deflection by TiO2 particle aggregates causes increase in fracture resistance with crack length, and suggests R-curve type behaviour. The study provides guidelines for processing high strength amorphous–nanocrystalline intermetallic composites based on the Al–Cu–Ti ternary system.  相似文献   

6.
Starting from elemental bismuth, tellurium and selenium powders, n-type Bi2Te2.85Se0.15 solid solution with fine microstructure was prepared by mechanical alloying (MA) and plasma activated sintering (PAS) in the present work. The effect of PAS process on microstructure and thermoelectric properties of the sintered samples was investigated. The sintering temperature of PAS process (683 K) was 80–100 K lower than that of conventional hot pressing and the whole PAS process was also greatly shortened to about 30 min. A preferentially orientated microstructure with the basal planes (0 0 l) perpendicular to pressing direction was formed in the PASed sample and the maximum figure of merit (Z) at room temperature was 1.80 × 10−3 K−1.  相似文献   

7.
The effects of ZnO additive on the microstructures, the phase formation and the microwave dielectric properties of MgTiO3–CaTiO3 ceramics were investigated. The sintering temperature of ZnO-doped 0.95MgTiO3–0.05CaTiO3 ceramics can be lowered to 1300 °C due to the liquid phase effect. Formation of second phase MgTi2O5 can be effectively restrained through the addition of ZnO. The microwave dielectric properties are found strongly correlated with the sintering temperature as well as the amount of ZnO addition. At 1300 °C, 0.95MgTiO3–0.05CaTiO3 ceramics with 1 wt% ZnO addition possesses a dielectric constant r of 20, a Q × f value of 65,000 (at 7 GHz) and a τf value of −5.8 ppm/°C. In comparison with pure 0.95MgTiO3–0.05CaTiO3 ceramics, the doped sample shows not only a 16% loss reduction but also a lower sintering temperature. That makes it a very promising material to replace the present one for GPS patch antennas.  相似文献   

8.
Cathode material Sm0.5Sr0.5CoO3 (SSC) with perovskite structure for intermediate temperature solid oxide fuel cell was synthesized using glycine-nitrate process (GNP). The phase evolution and the properties of Sm0.5Sr0.5CoO3 were investigated. The single cell performance was also tested using La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) as electrolyte and SSC as cathode. The results show that the formation of perovskite phase from synthesized precursor obtained by GNP begins at a calcining temperature of 600 °C. The single perovskite phase is formed completely after sintering at a temperature of 1000 °C. The phase formation temperature for SSC with complete single perovskite phase is from 1000 to 1100 °C. The SrSm2O4 phase appeared in the sample sintered at 1200 °C. It is also found that the sample sintered at 1200 °C has a higher conductivity. The electrical conductivity of sample is higher than 1000 S/cm at all temperature examined from 250 to 850 °C, and the highest conductivity reaches 2514 S/cm at 250 °C. The thermal expansion coefficient of sample SSC is 22.8 × 10−6 K−1 from 30 to 1000 °C in air. The maximum output power density of LSGM electrolyte single cell attains 222 and 293 mW/cm2 at 800 and 850 °C, respectively.  相似文献   

9.
The magnetic and dielectric properties of Bi–Zn codoped Y-type hexagonal ferrite was investigated. The samples with composition of Ba2−xBixZn0.8+xCo0.8Cu0.4Fe12−xO22 (x = 0–0.4) were prepared by the solid-state reaction method. Phase formation was characterized by X-ray diffraction. The microstructure was observed via scanning electron microscopy. The magnetic and dielectric properties were measured using an impedance analyzer. Direct current (dc) electrical resistivity was measured using a pA meter/dc voltage source. Minor Bi doping (x = 0.05–0.25) will not destroy the phase formation of Y-type hexagonal ferrite, but lower the phase formation temperature distinctly. Bi substitution can also promote the sintering process. The Bi-containing samples (x > 0.05) can be sintered well under 900 °C without any other addition. The sintering temperature is about 200 °C lower than that of the Bi-free sample. The Bi–Zn codoped samples exhibit excellent magnetic and dielectric properties in hyper frequency. These materials are suitable for multi-layer chip-inductive components.  相似文献   

10.
Zirconia and alumina based ceramics present interesting properties for their application as implants, such as biocompatibility, good fracture resistance, as well as high fracture toughness and hardness. In this work the influence of sintering time on the properties of a ZrO2–Al2O3 composite material, containing 20 wt% of Al2O3, has been investigated. The ceramic composites were obtained by sintering, in air, at 1600 °C for sintering times between 0 and 1440 min. Sintered samples were characterized by microstructure and crystalline phases, as well as by mechanical properties. The grain growth exponents, n, for the ZrO2 and Al2O3 were 2.8 and 4.1, respectively, indicating that different mechanisms are responsible for grain growth of each phase. After sintering at 1600 °C, the material exhibited a dependency of hardness as function of sintering time, with hardness values between 1500 HV (120 min) and 1310 HV (1440 min) and a fracture toughness of 8 MPa m1/2, which makes it suitable for bioapplications, such as dental implants.  相似文献   

11.
Single phase WXAl50Mo50−X (X = 40, 30, 20 and 10) powders have been synthesized directly by mechanical alloying (MA). The structural evolutions during MA and subsequent as-milled powders by annealing at 1400 °C have been analyzed using X-ray diffraction (XRD). Different from the Mo50Al50 alloy, W40Al50Mo10 and W30Al50Mo20 alloys were stable at 1400 °C under vacuum. The results of high-pressure sintering indicated that the microhardnesses of two compositions, namely W40Al50Mo10 and W30Al50Mo20 alloys have higher values compared with W50Al50 alloy.  相似文献   

12.
Single phase La9.33Si6O26 ultrafine powder, as a kind of highly activated precursor to prepare medium-to-low temperature electrolyte for solid oxide fuel cells (SOFCs), has been successfully synthesized via a non-aqueous sol–gel and self-combustion approach from the starting materials: lanthanum nitrate (La(NO3)3·6H2O), citric acid, ethylene glycol (EG), tetraethyl orthosilicate (TEOS) and ammonium nitrate. The details of gel's self-combustion were investigated by DTA–TG and the structural characterization of as-synthesized powder from self-combustion was performed by XRD and SEM. The results show that La9.33Si6O26 single phase of apatite-type crystal structure can be directly synthesized by sol–gel self-combustion method without further calcinations on the condition that the molar ratio (R) of NO3 to citric acid and ethylene glycol being 6:1. Such powders composed of well-dispersed particles with an average size of 200 nm and a specific surface area of 5.54 m2/g. It can be sintered to 90% of its theoretical density at 1500 °C for 10 h, about 200 °C lower than the sintering temperature for the powder derived from traditional solid reactions. The sintered material has a thermal expansion coefficient of 9.2 × 10−6 K−1 between room temperature and 800 °C.  相似文献   

13.
BaTi0.6Zr0.4O3 powder was prepared from barium oxalate hydrate, zirconium oxy-hydroxide and titanium dioxide precursors. Barium oxalate hydrate and zirconium oxy-hydroxide were precipitated from nitrate solution onto the surface of suspended TiO2. Phase formation behaviour of the materials was extensively studied using XRD. BaTiO3 (BT) and BaZrO3 (BZ) start forming separately in the system upon calcinations in the temperature range 600–700 °C. BT–BZ solid solution then forms by diffusion of BT into BZ from 1050 °C onwards. The precursor completely transforms into BaTi0.6Zr0.4O3 (BTZ) at 1200 °C for 2 h calcination. The activation energy (AE) of BT (134 kJ mol−1) formation was found to be less than that of BZ (167.5 kJ mol−1) formation. BTZ formation requires 503.6 kJ mol−1 of energy. The sintering kinetics of the powder was studied using thermal analyzer. The mean activation energy for sintering was found to be 550 kJ mol−1.  相似文献   

14.
Dilatation characteristics of Ni53.6Mn27.1Ga19.3 alloy were measured in the temperature range of 20–360 °C. The coefficient of thermal expansion (CTE) decreased with increasing temperature in the temperature range of the existence of martensite. Three variants of martensite transformed gradually into austenite. Analysis of the dilatation characteristics showed that compression deformation of the alloy at room temperature produces two kinds of strain.  相似文献   

15.
Phase structure, microstructure, dielectric and piezoelectric properties of 0.4 wt% CeO2 doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 (Ce-BNT6BT) ceramics sintered in the temperature range from 1120 to 1200 °C have been investigated as a candidate for lead-free piezoelectric ceramics. Tetragonal phase played an important role in improvement of electrical properties and the density of the ceramics. Dielectric constant decreased slightly with the increase of sintering temperature in ferroelectric region but a reverse phenomenon occurred in antiferroelectric and paraelectric regions, suggesting that interfacial polarizations were improved with the increase of sintering temperature and domain walls of ferroelectricity became active after depolarization. At room temperature, Ce-BNT6BT ceramics sintered at 1180 °C showed good performances: dielectric constant was 914 at 1 kHz, thick coupling factor kt was 0.52, and the ratio of kt/kp was 2.3. The ceramics were suitable for narrowband filters and ultrasonic transducers in commercial applications.  相似文献   

16.
With the rapid growth in the use of NdFeB-type magnets and with the growing environmental need to conserve both energy and raw materials, the recycling of these magnets is becoming an ever important issue. In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. The resultant powder has been subsequently processed in one of two ways in order to produce permanent magnets. Firstly, the powder was subjected to a vacuum degassing treatment over a range of temperatures up to 1000 °C in order to produce powder that would be suitable for the production of anisotropic bonded or hot pressed magnets. Secondly, the HD-powder has been used to produce fully dense sintered magnets; in which case optimisation of the milling time, sintering temperature and time was carried out. The optimum degassing temperature for coercive powder was found to be 700 °C, giving powder with a remanence (Br) of 1350 mT (±50 mT) and an intrinsic coercivity (Hcj) of 750 kA m−1 (±50 kA m−1). The best sintered magnet was produced by very lightly milling the powder (30 min, roller ball mill), aligning, pressing and vacuum sintering at 1080 °C for 1 h. The magnetic properties of this magnet were: (BH)max = 290 kJ m−3 (±5 kJ m−3), Br = 1240 mT (±50 mT) and Hcj = 830 kA m−1 (±50 kA m−1); representing decreases of 15%, 10% and 20%, respectively, from the properties of the initial magnet.  相似文献   

17.
Since ultra-fine Ti(C, N) has large surface and high activity, preparation of high performance cermets using ultra-fine Ti(C, N) powders is very difficult at the present. In the paper, deoxidation process of ultra-fine TiC0.7N0.3 powder is carried out firstly, and the oxygen content of ultra-fine TiC0.7N0.3 powder can be decreased from more than 1 wt% to 0.06 wt%; milling technology of ultra-fine TiC0.7N0.3-based cermet is studied in the paper, the results show that the optimum milling time is 45 h and the ball to powder weight ratio is 15:1, and the dispersant helps to achieve a homogeneous distribution of the ultra-fine powder; during vacuum sintering of ultra-fine cermet, pores tend to form, hence NT6B shows relatively lower properties than NT6A. After HIP process (1350 °C, 90 min, 70 MPa), the porosity can be largely decreased. The prepared ultra-fine cermet has typical core–rim microstructure, finer grain size and enhanced properties.  相似文献   

18.
In this study, the influence of the glass addition and sintering parameters on the densification and mechanical properties of tetragonal zirconia polycrystals (3Y-TZP) ceramics were evaluated. High-purity tetragonal ZrO2 powder and La2O3-rich glass were used as starting powders. Two compositions based on ZrO2 and containing 5 wt.% and 10 wt.% of La2O3-rich glass were studied in this work. The starting powders were mixed/milled by planetary milling, dried at 90 °C for 24 h, sieved through a 60 mesh screen and uniaxially cold pressed under 80 MPa. The samples were sintered in air at 1200 °C, 1300 °C, 1400 °C for 60 min and at 1450 °C for 120 min, with heating and cooling rates of 10 °C/min. Sintered samples were characterized by relative density, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Hardness and fracture toughness were obtained by Vickers indentation method. Dense sintered samples were obtained for all conditions. Furthermore, only tetragonal-ZrO2 was identified as crystalline phase in sintered samples, independently of the conditions studied. Samples sintered at 1300 °C for 60 min presented the optimal mechanical properties with hardness and fracture toughness values near to 12 GPa and 8.5 MPa m1/2, respectively.  相似文献   

19.
The ionic conductivity and thermo-Raman spectra of anhydrous sodium pyrophosphate Na4P2O7 were measured dynamically in the temperature range from 25 to 600 °C with a heating rate of 2 °C min−1 to understand the structural evolution and phase transformation involved. The DSC thermogram was also measured in the same thermal process for the phase transformation investigation. The spectral variations observed in the thermo-Raman investigation indicated the transformation of Na4P2O7 from low temperature phase () to high temperature phase () proceeded through pre-transitional region from 75 to 410 °C before the major orientational disorder at 420 °C and minor structural modifications at 511, 540 and 560 °C. The activation energies and enthalpies of the proposed phase transformations were determined. The possible mechanism for temperature dependent conductivity in Na4P2O7 was discussed with the available data.  相似文献   

20.
Effects of precursor milling on phase evolution and morphology of mullite (3Al2O3·2SiO2) processed by solid-state reaction have been investigated. Alumina and silica powders were used as starting materials and milling was taken place in a medium energy conventional ball mill and a high-energy planetary ball mill. Milling in a conventional ball mill although decreases mullite formation temperature by 200 °C, but does not considerably change mullite phase morphology. Use of a planetary ball mill after 40 h of milling showed to be much more effective in activating the oxide precursors, and mullitization temperature was reduced to below 900 °C. Whisker like mullite was formed after sintering at 1450 °C for 2 h and volume fraction of this structure was increased by increasing the milling time. XRD results showed that samples mechanically activated for 20 h in the planetary ball mill were fully transformed to mullite after sintering at 1450 °C, whereas Al2O3 and SiO2 phases were still detected in the samples milled in the conventional ball mill for 20 h and then sintered at the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号