首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid-crystal optical phased-array technology that uses stressed liquid crystals provides a new type of tip-tilt wavefront corrector. It demonstrates a very fast time response (10 kHz) and high beam-steering efficiency (approximately 91%). The new technology presented here will allow for a nonmechanical, high-speed correction with simple device construction.  相似文献   

2.
The effects of the nanoparticle geometry and the host matrix on the optical properties of silver (Ag) nanocomposites were investigated. The spatial intensity distribution and absorption spectra were obtained by solving Maxwell equations using the finite-difference time-domain method. Local enhancement of the optical field was produced near the surface of the Ag nanoparticle. As the nanoparticle size increased, the plasmon-induced absorption increased and the surface plasmon resonance (SPR) wavelength of the Ag nanocomposite was redshifted. As the nanoparticle geometry was transformed from a sphere to an ellipsoid, two plasmon peaks appeared and their spectral spacing became larger with increasing the aspect ratio. The effects of the nanoparticle size and the anisotropic geometry on the optical properties of the Ag nanocomposites can be described by the Maxwell-Garnett theory and the Drude model. From the absorption spectra of the Ag nanocomposites with five different host matrices (SiO2, Al2O3, ZnO, ZrO2, and TiO2), it was found that the SPR wavelength of the Ag nanocomposite was redshifted with increasing the refractive index of the host matrix.  相似文献   

3.
Chow WW 《Applied optics》1984,23(23):4332-4338
The effects of imperfect frequency locking on the performance of an optical phased array were investigated. An analytic expression was obtained for the far field intensity pattern in terms of the degree of mutual coherence between lasers. The results of the analytical study were applied to determine the Strehl ratio of an injection coupled optical phased array for different degrees of slave resonator length control, ratios of injected to slave laser intensities, and pulse durations.  相似文献   

4.
A polymer-wall-confined transmissive switchable liquid crystal grating is proposed and investigated by two-dimensional finite-difference time-domain optical calculation and liquid-crystal-director calculation, to our knowledge for the first time. The results show how to obtain optimized conditions for high diffraction efficiency by adjusting the liquid crystal parameters, grating geometric structure, and applied voltages. The light propagation direction and efficiency can be accurately calculated and visualized concurrently.  相似文献   

5.
Recently designed, modern versions of renais sance woodwind instruments such as the recorder and serpent use square cross sections and a folded acoustic transmission line. Conventional microwave techniques would expect that this bend would cause unwanted reflections and impedance discontinuities. This paper analyses the folded acoustic transmission line using finite-difference, time-domain techniques and shows that the discontinuity can be compensated with by the use of a manufacturable method.  相似文献   

6.
曲面构件被广泛应用在各个领域的关键部位,一旦出现质量问题将造成不可估量的后果,为确保曲面构件在服役期间安全可靠,对其定期进行无损检测尤为重要。因超声相控阵技术检测灵敏度高、速度快,适用于曲面构件的快速检测,特别是柔性相控阵换能器的成功研制满足了复杂曲面构件的检测需求,但目前仍缺乏相应的理论支撑。因此,提出了复杂曲面柔性相控阵动态聚焦理论,并建立有限元声场时域仿真模型。结果表明,基于所提出的聚焦理论,采用柔性相控阵换能器可解决复杂曲面构件内部微小缺陷检测难题,为柔性相控阵换能器参数设计提供了理论依据,推动了柔性相控阵换能器的应用与发展。  相似文献   

7.
8.
Skinner NG  Byrne DM 《Applied optics》2006,45(9):1943-1950
We use the finite-difference time-domain (FDTD) method to model the spectral properties of frequency-selective surfaces (FSSs) at normal incidence in the 1-10 microm wavelength. At these wavelengths the usual assumption that the metallic portions of a FSS are infinitesimally thin perfect conductors are no longer valid. We include the effects of dispersive complex conductivity for real metals and dispersive permittivity for dielectric materials by developing a unified approach that is especially suited for use in FDTD simulations. We concentrate on the finite nature of the metallic conductivity and its variation with wavelength in FSS structures. Our simulation results indicate that the resonant spectrum of a FSS in this wavelength range depends not only on the geometry of the structure and the dielectric substrate present, but also critically on the dispersive properties of the metal species used for the conductors.  相似文献   

9.
The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.  相似文献   

10.
The target-based phasing of an optical phased array (OPA) fed by a broadband master oscillator laser source is investigated. The specific scenario examined here considers an OPA phasing through atmospheric turbulence on a rough curved object. An analytical expression for the detected or received intensity is derived. Gleaned from this expression are the conditions under which target-based phasing is possible. A detailed OPA wave optics simulation is performed to validate the theoretical findings. Key aspects of the simulation set-up as well as the results are thoroughly discussed.  相似文献   

11.
Morgan SP 《Applied optics》2004,43(10):2071-2078
Diffusive wave phased arrays have been demonstrated to be a sensitive method of detecting inhomogeneities embedded in heavily scattering media. However, the increase in sensitivity is coupled with an increase in noise, so that the optimum performance may not be obtained when the sources are modulated in antiphase. The performance of a range of configurations in the presence of Gaussian noise is investigated by using probabilistic detection theory. A model of diffusive wave propagation through scattering media is used to demonstrate that the phase performance can be improved by controlling the relative phase difference between the two sources. However, the best performance is obtained by using the amplitude response of a single source system. The major benefit of a phased array system is therefore the rejection of common systematic noise.  相似文献   

12.
Optical images of textured liquid-crystal films containing various types of twist disclination loops are computed using an approximate matrix method and a direct numerical simulation based on the finite-difference time-domain (FDTD) method. The selected defects introduce large multidirectional spatial gradients in the optic axis, mimicking the orientation textures that arise in the construction and use of biosensors based on liquid-crystal vision. It is shown that under these experimentally relevant conditions, the matrix method fails to capture important signatures in the transmitted light intensity under crossed polarizers. The differences between the predictions by the two methods are analyzed with respect to gradients in the optic axis. We show that the FDTD method is a useful tool to perform computational optics of textured liquid-crystal films.  相似文献   

13.
14.
Suhre DR 《Applied optics》1986,25(21):3916-3918
A novel geometrical laser array is presented in which high far-field intensities can be generated without phase control of the laser elements. The array was analyzed by randomly varying the phasing of the elements and calculating the maximum far-field intensity. In the worst possible phasing conditions, the maximum far-field intensity remained high and was nearly constant with regard to the number of array elements. By increasing the geometrical spacing factor, the maximum intensity will approach that of a perfectly phased array.  相似文献   

15.
A novel two-dimensional finite-difference time-domain simulation for treating the interaction of a focused beam with a rewritable optical disk is detailed and experimentally validated. In this simulation, the real material properties of the rewritable multilayer stack and the aperiodic nature of the disk topography are considered. Excellent agreement is obtained between calculated and measured push-pull tracking servosignals for magneto-optical disks with pregrooves and infinite-length preformat pits. To demonstrate the utility of the simulation as a design tool, the design process for a 0.9-μm track pitch, continuous, composite servoformat magneto-optical disk is given.  相似文献   

16.
We evaluate the numerical accuracy of finite-difference time-domain (FDTD) analysis of optical transport in a three-dimensional scattering medium illuminated by an isotropic point source. This analysis employs novel boundary conditions for the diffusion equation. The power radiated from an isotropic point source located at a depth equal to the reciprocal of the reduced scattering coefficient (1/μ'(s)) below the surface at the irradiated position is introduced to the integral form of the diffusion equation. Finite-difference approximations of the diffusion equation for a surface cell are derived by utilizing new boundary conditions that include an isotropic source even in a surface cell. Steady-state and time-resolved reflectances are calculated by FDTD analysis for a semi-infinite uniform scattering medium illuminated by an isotropic point source. The numerical results agree reasonably with the analytical solutions for μ'(s)=1-3 mm(-1) without resizing the mesh elements.  相似文献   

17.
We studied the influence of nanorod (NR) morphology on the optical confinement. In order to understand the optical field confinement by the ZnO NR, we obtained the spatial intensity distribution inside/outside the NR by solving Maxwell equations using the finite-difference time-domain numerical simulation. The hexagonal cylinder-shaped NR exhibits a strong confinement and the circular cylinder-shaped NR shows also similar confinement effect. Meanwhile, the rectangular cylinder-shaped NR, the tapered NR, and the NR with sharp cone show a weak confinement of optical field as compared to that of the hexagonal cylinder-shaped NR. Next, as the rod length and/or the rod diameter increase, the high intensity region increases. This suggests that longer nanorod will exhibit more efficient lasing action.  相似文献   

18.
Smith PJ  Taylor CM  Shaw AJ  McCabe EM 《Applied optics》2000,39(16):2664-2669
We present a programmable array microscope that uses a ferroelectric liquid-crystal spatial light modulator (SLM) for dynamic generation of scanning apertures. A single SLM serves as both the source and the detector aperture array in a double-pass confocal system. Successive aperture frames scan the array across the viewing area for complete imaging of a sample while preserving depth discrimination. Integration of the microscope output across all aperture frames produces a confocal image.  相似文献   

19.
This simulation study proposes a noninvasive, transesophageal cardiac-thermal ablation using a planar ultrasound phased array (1 MHz, 60 x 10 mm2, 0.525 mm interelement spacing, 114 x 20 elements). Thirty-nine foci in cardiac muscle were defined at 20, 40, and 60-mm distances and at various angles from the transducer surface to simulate the accessible posterior left atrial wall through the esophageal wall window. The ultrasound pressure distribution and the resulting thermal effect in a volume of 60 x 80 x 80 mm3, including esophagus and cardiac muscle, were simulated for each focus. For 1, 10, and 20-s sonications with 60 degrees C and 70 degrees C peak temperatures in cardiac muscle and without thermal damage in esophageal wall, the transducer acoustic powers were 105-727, 28-117, 21-79 W and 151-1044, 40-167, 30-114 W, respectively. The simulated lesions (thermal dose in equivalent minutes at 43 degrees C > or = 240 minutes) at these foci had lengths of 1-6, 3-11, 3-13 mm and 3-15, 5-19, 6-23 mm, respectively, and widths of 1-4, 2-7, 3-9 mm and 3-9, 4-13, 4-17 mm, respectively. As a first step toward feasibility, controllable tissue coagulation in cardiac tissue without damage to the esophagus was demonstrated numerically.  相似文献   

20.
In the finite-difference time-domain (FDTD) method, a simple and realistic feed model for coaxial probe driven antennas is proposed here. The feed zone of the antenna may be considered as an equivalent source in view of the antenna theory and a load port in view of the transmission line theory. The proposed feed model is constructed by combining the infinitesimal-gap source condition of the antenna and the equivalent load condition of the feed line. It leads to perform no additional FDTD cell modelling of the line. The transient reflected voltage and the input impedance of cylindrical monopole antennas fed by coaxial lines are calculated numerically and then compared with the accurate measurement and a full fine-grid. The FDTD results of the proposed model have a good agreement with the measured data and the fine-grid results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号