首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a cDNA library screen for clones that induce transformation of NIH 3T3 fibroblasts, we have isolated a cDNA encoding the murine homolog of the guanine nucleotide exchange factor RasGRP. A point mutation predicted to prevent interaction with Ras abolished the ability of murine RasGRP (mRasGRP) to transform fibroblasts and to activate mitogen-activated protein kinases (MAP kinases). MAP kinase activation via mRasGRP was enhanced by coexpression of H-, K-, and N-Ras and was partially suppressed by coexpression of dominant negative forms of H- and K-Ras. The C terminus of mRasGRP contains a pair of EF hands and a C1 domain which is very similar to the phorbol ester- and diacylglycerol-binding C1 domains of protein kinase Cs. The EF hands could be deleted without affecting the ability of mRasGRP to transform NIH 3T3 cells. In contrast, deletion of the C1 domain or an adjacent cluster of basic amino acids eliminated the transforming activity of mRasGRP. Transformation and MAP kinase activation via mRasGRP were restored if the deleted C1 domain was replaced either by a membrane-localizing prenylation signal or by a diacylglycerol- and phorbol ester-binding C1 domain of protein kinase C. The transforming activity of mRasGRP could be regulated by phorbol ester when serum concentrations were low, and this effect of phorbol ester was dependent on the C1 domain of mRasGRP. The C1 domain could also confer phorbol myristate acetate-regulated transforming activity on a prenylation-defective mutant of K-Ras. The C1 domain mediated the translocation of mRasGRP to cell membranes in response to either phorbol ester or serum stimulation. These results suggest that the primary mechanism of activation of mRasGRP in fibroblasts is through its recruitment to diacylglycerol-enriched membranes. mRasGRP is expressed in lymphoid tissues and the brain, as well as in some lymphoid cell lines. In these cells, RasGRP has the potential to serve as a direct link between receptors which stimulate diacylglycerol-generating phospholipase Cs and the activation of Ras.  相似文献   

2.
3.
Kinase suppressor of Ras (KSR) is a loss-of-function allele that suppresses the rough eye phenotype of activated Ras in Drosophila and the multivulval phenotype of activated Ras in Caenorhabditis elegans. Genetic and biochemical studies suggest that KSR is a positive regulator of Ras signaling that functions between Ras and Raf or in a pathway parallel to Raf. We examined the effect of mammalian KSR expression on the activation of extracellular ligand-regulated (ERK) mitogen-activated protein (MAP) kinase in fibroblasts. Ectopic expression of KSR inhibited the activation of ERK MAP kinase by insulin, phorbol ester, or activated alleles of Ras, Raf, and mitogen and extracellular-regulated kinase. Expression of deletion mutants of KSR demonstrated that the KSR kinase domain was necessary and sufficient for the inhibitory effect of KSR on ERK MAP kinase activity. KSR inhibited cell transformation by activated RasVal-12 but had no effect on the ability of RasVal-12 to induce membrane ruffling. These data indicate that KSR is a potent modulator of a signaling pathway essential to normal and oncogenic cell growth and development.  相似文献   

4.
Raf is a mitogen-stimulated protein kinase that functions as a component of the signaling cascade that leads to the stimulation of mitogen-activated protein kinase. Here we show that the native structure of Raf is a large multi-subunit protein complex with an apparent mass of 300-500 kDa that interacts with Ras and the mitogen-activated protein kinase kinase Mek. Analysis of the structure of the Raf complex demonstrates that it contains a single Raf protein kinase together with the molecular chaperones hsp90 and p50. The Raf-hsp90-p50 complex was observed in starved cells and in cells activated with serum or phorbol ester. Thus, changes in complex formation with hsp90 and p50 are not required for activation of the Raf protein kinase. However, Raf activation caused by Ras was associated with the translocation of the cytoplasmic Raf-hsp90-p50 complex to the cell membrane. Significantly, it is only the membrane-bound complex that exhibits increased protein kinase activity. Thus, the Ras-activated Raf protein kinase functions as a membrane-bound multi-subunit complex.  相似文献   

5.
Kinase suppressor of Ras (KSR) is an evolutionarily conserved component of Ras-dependent signaling pathways. Here, we find that murine KSR (mKSR1) translocates from the cytoplasm to the plasma membrane in the presence of activated Ras. At the membrane, mKSR1 modulates Ras signaling by enhancing Raf-1 activity in a kinase-independent manner. The activation of Raf-1 is mediated by the mKSR1 cysteine-rich CA3 domain and involves a detergent labile cofactor that is not ceramide. These findings reveal another point of regulation for Ras-mediated signal transduction and further define a noncatalytic role for mKSR1 in the multistep process of Raf-1 activation.  相似文献   

6.
High intracellular 1,2,-sn-diacylglycerol (DAG) usually activates protein kinase C (PKC). In choline-deficient Fischer 344 rats, we previously showed that fatty liver was associated with elevated hepatic DAG and sustained activation of PKC. Steatosis is a sequelae of many liver toxins, and we wanted to determine whether fatty liver is always associated with accumulation of DAG with activation of PKC. Obese Zucker rats had 11-fold more triacylglycerol in their livers and 2-fold more DAG in their hepatic plasma membrane than did lean control Zucker rats. However, this increased diacylglycerol was not associated with translocation or activation of PKC in hepatic plasma membrane (activity in obese rats was 897 pmol/mg protein X min(-1) vs. 780 pmol/mg protein X min(-1) in lean rats). No differences in PKC isoform expression were detected between obese and lean rats. In additional studies, we found that choline deficiency in the Zucker rat did not result in activation of PKC in liver, unlike our earlier observations in the choline deficient Fischer rat. This dissociation between fatty liver, DAG accumulation and PKC activation in Zucker rats supports previous reports of abnormalities in PKC signaling in this strain of rats.  相似文献   

7.
The pathway involving the signalling protein p21Ras propagates a range of extracellular signals from receptors on the cell membrane to the cytoplasm and nucleus. The Ras proteins regulate many effectors, including members of the Raf family of protein kinases. Ras-dependent activation of Raf-1 at the plasma membrane involves phosphorylation events, protein-protein interactions and structural changes. Phosphorylation of serine residues 338 or 339 in the catalytic domain of Raf-1 regulates its activation in response to Ras, Src and epidermal growth factor. Here we show that the p21-activated protein kinase Pak3 phosphorylates Raf-1 on serine 338 in vitro and in vivo. The p21-activated protein kinases are regulated by the Rho-family GTPases Rac and Cdc42. Our results indicate that signal transduction through Raf-1 depends on both Ras and the activation of the Pak pathway. As guanine-nucleotide-exchange activity on Rac can be stimulated by a Ras-dependent phosphatidylinositol-3-OH kinase, a mechanism could exist through which one Ras effector pathway can be influenced by another.  相似文献   

8.
9.
In mitogenic signaling pathways, Shc participates in the growth factor activation of Ras by interacting with activated receptors and/or the Grb-2.Sos complex. Using several experimental approaches we demonstrate that Shc, through its SH2 domain, forms a complex with the cytoplasmic domain of cadherin, a transmembrane protein involved in the Ca2+-dependent regulation of cell-cell adhesion. This interaction is demonstrated in a yeast two-hybrid assay, by co-precipitation from mammalian cells, and by direct biochemical analysis in vitro. The Shc-cadherin association is phosphotyrosine-dependent and is abrogated by addition of epidermal growth factor to A-431 cells maintained in Ca2+-free medium, a condition that promotes changes in cell shape. Shc may therefore participate in the control of cell-cell adhesion as well as mitogenic signaling through Ras.  相似文献   

10.
Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.  相似文献   

11.
Monoglucosylation of low molecular mass GTPases is an important post-translational modification by which microbes interfere with eukaryotic cell signaling. Ha-Ras is monoglucosylated at effector domain amino acid threonine 35 by Clostridium sordellii lethal toxin, resulting in a blockade of the downstream mitogen-activated protein kinase cascade. To understand the molecular consequences of this modification, effects of glucosylation on each step of the GTPase cycle of Ras were analyzed. Whereas nucleotide binding was not significantly altered, intrinsic GTPase activity was markedly decreased, and GTPase stimulation by the GTPase-activating protein p120(GAP) and neurofibromin NF-1 was completely blocked, caused by failure to bind to glucosylated Ras. Guanine nucleotide exchange factor (Cdc25)-catalyzed GTP loading was decreased, but not completely inhibited. A dominant-negative property of modified Ras to sequester exchange factor was not detectable. However, the crucial step in downstream signaling, Ras-effector coupling, was completely blocked. The Kd for the interaction between Ras.GTP and the Ras-binding domain of Raf was 15 nM, whereas glucosylation increased the Kd to >1 mM. Because the affinity of Ras.GDP for Raf (Kd = 22 microM) is too low to allow functional interaction, a glucose moiety at threonine 35 of Ras seems to block completely the interaction with Raf. The net effect of lethal toxin-catalyzed glucosylation of Ras is the complete blockade of Ras downstream signaling.  相似文献   

12.
Ret/ptc2 is a constitutively active, oncogenic form of the c-Ret receptor tyrosine kinase. Like the other papillary thyroid carcinoma forms of Ret, Ret/ptc2 is activated through fusion of the Ret tyrosine kinase domain to the dimerization domain of another protein. Investigation of requirements for Ret/ptc2 mitogenic activity, using coexpression with dominant negative forms of Ras and Raf, indicated that these proteins are required for mitogenic signaling by Ret/ptc2. Because activation of Ras requires recruitment of Grb2 and SOS to the plasma membrane, the subcellular distribution of Ret/ptc2 was investigated, and it was found to localize to the cell periphery. This localization was mediated by association with Enigma via the Ret/ptc2 sequence containing tyrosine 586. Because Shc interacts with MEN2 forms of Ret, and because phosphorylation of Shc results in Grb2 recruitment and subsequent signaling through Ras and Raf, the potential interaction between Ret/ptc2 and Shc was investigated. The PTB domain of Shc also interacted with Ret/ptc2 at tyrosine 586, and this association resulted in tyrosine phosphorylation of Shc. Coexpression of chimeric proteins demonstrated that mitogenic signaling from Ret/ptc2 required both recruitment of Shc and subcellular localization by Enigma. Because Shc and Enigma interact with the same site on a Ret/ptc2 monomer, dimerization of Ret/ptc2 allows assembly of molecular complexes that are properly localized via Enigma and transmit mitogenic signals via Shc.  相似文献   

13.
Previously, we have shown that tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, increases the synthesis and release of endothelin-1 (ET-1), a potent vasoactive peptide from human non-pigmented ciliary epithelial (HNPE) cells, in a protein kinase C (PKC)-dependent manner. Diacylglycerol (DAG) and intracellular calcium ([Ca2+]i) are well known activators of PKC. Some cytokines induce PKC activation by stimulating phospholipase C that hydrolyzes phosphatidylinositol bisphosphate (PIP2) into IP3 (intracellular calcium mobilizer) and DAG. In this study, the existence of a similar pathway was evaluated in HNPE cells treated with TNF-alpha, using intracellular calcium ([Ca2+]i) measurements, PKC translocation assays and thin-layer chromatography (TLC) for quantification of DAG. Incubation times for agonists and inhibitors ranged from 1-30 minutes. The increase in DAG levels with TNF-alpha treatment was consistent with the observed translocation of the calcium-dependent PKC alpha isoform from the cytosol to the plasma membrane. However, these observations were not accompanied by a concomitant increase in [Ca2+]i. Similar translocation responses were observed with phorbol ester (phorbol 12-myristate 13-acetate) treatment. Our results indicate that TNF-alpha-induced PKC activation in HNPE cells occurs as a result of elevated DAG levels and is not due to an increase in intracellular calcium. Activated PKC, could enhance the pro-inflammatory responses of TNF-alpha in part by increasing the production of endothelins in the eye.  相似文献   

14.
Activation of the Rap1 GTPase by the B cell antigen receptor   总被引:1,自引:0,他引:1  
The B cell antigen receptor (BCR) activates Ras, a GTPase that promotes cell proliferation by activating the Raf-1/MEK/ERK signaling module and other signaling enzymes. In its active GTP-bound form, the Rap1 GTPase may act as a negative regulator of Ras-mediated signaling by sequestering Ras effectors (e.g., Raf-1) and preventing their activation. In this report, we show that BCR engagement activates Rap1 and that this is dependent on production of diacylglycerol (DAG) by phospholipase C-gamma. Activation of Rap1 by the BCR was greatly reduced in phospholipase C-gamma-deficient B cells, whereas both a synthetic DAG and phorbol dibutyrate could activate Rap1 in B cells. We had previously shown that C3G, an activator of Rap1, associates with the Crk adaptor proteins in B cells and that BCR engagement causes Crk to bind to the Cas and Cbl docking proteins. However, the DAG-dependent pathway by which the BCR activates Rap1 apparently does not involve Crk signaling complexes since phorbol dibutyrate could activate Rap1 without inducing the formation of these complexes. Thus, the BCR activates Rap1 via a novel DAG-dependent pathway.  相似文献   

15.
16.
Two voltage-activated calcium currents, a transient T-type and a PL-sustained type, have been measured in isolated, cultured white bass horizontal cells. These two voltage-activated calcium currents were found to be modulated by two independent second-messenger systems. Furthermore, activation of either second-messenger system led to similar changes in calcium current activity. Activation of the cyclic AMP second-messenger pathway or the sn-1,2-diacylglycerol (DAG) second-messenger system resulted in a significant decrease in the amplitude of the transient current and a simultaneous large increase in the amplitude of the sustained current. Both second-messenger systems achieved their effects through protein phosphorylation. The cyclic AMP pathway resulted in the activation of protein kinase A (PKA) and the DAG pathway worked to activate protein kinase C (PKC). Two protein kinase inhibitors were analyzed in this study for their ability to inhibit second-messenger activated protein kinase activity and separate the two pathways. The peptide cyclic AMP-dependent protein kinase inhibitor and staurosporine were found to be nonspecific at high concentrations and inhibited both second-messenger pathways. At low concentrations however, staurosporine specifically inhibited only PKC, whereas adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase inhibitor was selective for PKA. Both second-messenger systems were activated by the neuromodulator, dopamine. Thus one agonist can initiate multiple second-messenger systems leading to similar changes in voltage-activated calcium current activity. The modulatory action on calcium currents produced by one second-messenger system added to the modulatory action resulting from activation of the other second-messenger system. The effect is to alter the magnitude of the horizontal cell calcium currents.  相似文献   

17.
Inhibition of Ras-dependent signaling and of oncogenic Ras function by farnesyl transferase inhibitors that block Ras membrane anchorage is limited due to alternative prenylation of Ras. Here we demonstrate that inhibition of the Ras-dependent Raf-1-MAPK (mitogen activated protein kinase) cascade is achieved by S-farnesylthiosalicylic acid (FTS) which affects Ras membrane association but not Ras farnesylation. FTS interferes with the activation of Raf-1 and MAPK and inhibits DNA synthesis in Ras-transformed EJ cells at concentrations similar to those at which it inhibits EJ cell growth (5-25 microM). FTS also inhibits MAPK activity and DNA synthesis stimulated by serum, EGF or thrombin in serum-starved untransformed Rat-1 cells, demonstrating the generality of its effects on Ras-dependent signaling. The effects of FTS on MAPK activity developed relatively rapidly (within 2-6 h) consistent with its rapid effect on Ras membrane anchorage. FTS represents a new class of Ras antagonists that may be useful for the inhibition of various types of oncogenic Ras isoforms independently of their prenylation.  相似文献   

18.
Increased integrin ligand binding affinity (activation) is triggered by intracellular signaling events. A Ras-initiated mitogen-activated protein kinase pathway suppresses integrin activation in fibroblasts. We used expression cloning to isolate cDNAs that prevent Ras suppression of integrin activation. Here, we report that PEA-15, a small death effector domain (DED)-containing protein, blocks Ras suppression. PEA-15 does not block the capacity of Ras to activate the ERK mitogen-activated protein kinase pathway. Instead, it inhibits suppression via a pathway blocked by a dominant-negative form of the distinct small GTPase, R-Ras. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to reverse suppression of integrin activation. Thus, certain DED-containing proteins can regulate integrin activation as opposed to apoptotic protease cascades.  相似文献   

19.
Ral GDP dissociation stimulator (RalGDS), a putative effector protein of Ras, stimulated the GDP/GTP exchange reaction of the post-tanslationally lipid-modified but not the unmodified form of Ral in response to epidermal growth factor in COS cells. The RalGDS action on Ral was enhanced by an active form of Ras but not a Ras mutant which was not post-translationally modified in the cells. The RalGDS activity was inhibited by acidic membrane phospholipids such as phosphatidylinositol and phosphatidylserine but not by phosphatidylcholine or phosphatidylethanolamine in vitro. The post-translationally modified form but not unmodified form of Ras, Ral, and Rap were incorporated in liposomes consisting of these phospholipids. When Ral was incorporated alone in the liposomes, RalGDS did not stimulate the dissociation of GDP from Ral. When Ral was incorporated with the GTP-bound form of Ras in the liposomes, RalGDS stimulated the dissociation of GDP from Ral, while the GDP-bound form of Ras did not affect the RalGDS action. The Ras-dependent Ral activation through RalGDS required the Ras-binding domain of RalGDS. Rap, which shared the same effector loop as Ras, also stimulated the dissociation of GDP from Ral through RalGDS in the liposomes, although Rap did not enhance the RalGDS action in COS cells. Taken together with our previous observations that Ras recruits RalGDS to the membrane, these results indicate that the post-translational modifications of Ras and Ral are important for Ras-dependent Ral activation through RalGDS and that colocalization of Ras and Ral on the membrane is necessary for Ral activation in intact cells.  相似文献   

20.
In gastric chief cells, agents that activate protein kinase C (PKC) stimulate pepsinogen secretion and phosphorylation of an acidic 72-kDa protein. The isoelectric point and molecular mass of this protein are similar to those for a common PKC substrate; the MARCKS (for Myristoylated Alanine-Rich C Kinase Substrate) protein. We examined expression and phosphorylation of the MARCKS-like protein in a nearly homogeneous suspension of chief cells from guinea pig stomach. Western blotting of fractions from chief cell lysates with a specific MARCKS antibody resulted in staining of a myristoylated 72-kDA protein (pp72), associated predominantly with the membrane fraction. Using permeabilized chief cells, we examined the effect of PKC activation (with the phorbol ester PMA), in the presence of basal (100 nM) or elevated cellular calcium (1 microM), on pepsinogen secretion and phosphorylation of the 72-KDa MARCKS-like protein. Secretion was increased 2.3-, 2.6-, and 4.5-fold by incubation with 100 nM PMA, 1 microM calcium, and PMA plus calcium, respectively. A PKC inhibitor (1 microM CGP 41 251) abolished PMA-induced secretion, but did not alter calcium-induced secretion. This indicates that calcium-induced secretion is independent of PKC activation. Chief cell proteins were labeled with 32P-orthophosphate and phosphorylation of pp72 was detected by autoradiography of 2-dimensional polyacrylamide gels. In the presence of basal calcium, PMA (100 nM) caused a > two-fold increase in phosphorylation of pp72. Without PMA, calcium did not alter phosphorylation of pp72. However, 1 microM calcium caused an approx. 50% attenuation of PMA-induced phosphorylation of pp72. Experiments with a MARCKS "phosphorylation/calmodulin binding domain peptide" indicated that calcium/calmodulin inhibits phosphorylation of pp72 by binding to the phosphorylation/calmodulin binding domain and not by inhibiting PKC activity. These observations support the hypothesis that, in gastric chief cells, interplay between calcium/calmodulin binding and phosphorylation of a common domain on the 72-kDa MARCKS-like protein plays a role in modulating pepsinogen secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号