首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two K-Band low-noise amplifiers (LNAs) are designed and implemented in a standard 0.18 /spl mu/m CMOS technology. The 24 GHz LNA has demonstrated a 12.86 dB gain and a 5.6 dB noise figure (NF) at 23.5 GHz. The 26 GHz LNA achieves an 8.9 dB gain at the peak gain frequency of 25.7 GHz and a 6.93 dB NF at 25 GHz. The input referred third-order intercept point (IIP3) is >+2 dBm for both LNAs with a current consumption of 30 mA from a 1.8 V power supply. To our knowledge, the LNAs show the highest operation frequencies ever reported for LNAs in a standard CMOS process.  相似文献   

2.
A 24 GHz monolithic low-noise amplifier (LNA) is implemented in a standard 0.18 /spl mu/m CMOS technology. Measurements show a gain of 12.86 dB and a noise figure of 5.6 dB at 23.5 GHz. The input and output return losses are better than 11 dB and 22 dB across the 22-29 GHz span, respectively. The operation frequency of 24 GHz is believed to be the highest reported for LNA in a standard CMOS technology.  相似文献   

3.
A 24-GHz low-noise amplifier (LNA) was designed and fabricated in a standard 0.18-/spl mu/m CMOS technology. The LNA chip achieves a peak gain of 13.1 dB at 24 GHz and a minimum noise figure of 3.9 dB at 24.3 GHz. The supply voltage and supply current are 1 V and 14 mA, respectively. To the author's knowledge, this LNA demonstrates the lowest noise figure among the reported LNAs in standard CMOS processes above 20 GHz.  相似文献   

4.
A 3-6 GHz CMOS broadband low noise amplifier (LNA) for ultra-wideband (UWB) radio is presented. The LNA is fabricated with the 0.18 /spl mu/m 1P6M standard CMOS process. Measurement of the CMOS LNA is performed using an FR-4 PCB test fixture. From 3 to 6 GHz, the broadband LNA exhibits a noise figure of 4.7-6.7 dB, a gain of 13-16 dB, and an input/output return loss higher than 12/10 dB, respectively. The input P/sub 1 dB/ and input IP3 (IIP3) at 4.5 GHz are about -14 and -5 dBm, respectively. The DC supply is 1.8 V.  相似文献   

5.
Chirala  M.K. Guan  X. Nguyen  C. 《Electronics letters》2006,42(22):1273-1274
A distributed low-noise amplifier (LNA) employing novel multilayered transmission lines and inductors is designed in a standard 0.18 mum CMOS process. The new LNA provides significant improvement in performance and size with less than 13 dB return loss from DC to 17 GHz, average gain of 8plusmn0.2 dB from DC to 20 GHz, noise figure of 3.4-5 dB from 0.5-19 GHz, power consumption of 34.2 mW, and 1.05times0.37 mm 2 chip size including RF pads  相似文献   

6.
通过一个符合性能指标的,用于射频接收系统的CMOS低噪声放大性能的设计,讨论了深亚微米MOSFET的噪声情况,并在满足增旋和功耗的前提下,对低噪声放大噪声性能进行分析和优化,该LNA工作在2.5GHz电源电压,直流功耗为25mW,能够提供19dB的增益(S21),而噪声系数仅为2.5dB,同时输入匹配良好,S11为-45dB,整个电路只采用了一个片外电感使电路保持谐振,此设计结果证明CMOS工艺在射频集成电路设计领域具有可观的潜力。  相似文献   

7.
正This paper presents a wideband low noise amplifier(LNA) for multi-standard radio applications.The low noise characteristic is achieved by the noise-canceling technique while the bandwidth is enhanced by gateinductive -peaking technique.High-frequency noise performance is consequently improved by the flattened gain over the entire operating frequency band.Fabricated in 0.18μm CMOS process,the LNA achieves 2.5 GHz of -3 dB bandwidth and 16 dB of gain.The gain variation is within±0.8 dB from 300 MHz to 2.2 GHz.The measured noise figure(NF) and average HP3 are 3.4 dB and -2 dBm,respectively.The proposed LNA occupies 0.39 mm2 core chip area.Operating at 1.8 V,the LNA drains a current of 11.7 mA.  相似文献   

8.
This paper presents a systematic design methodology for broad-band CMOS low-noise amplifiers (LNAs). The feedback technique is proposed to attain a better design tradeoff between gain and noise. The network synthesis is adopted for the implementation of broad-band matching networks. The sloped interstage matching is used for gain compensation. A fully integrated ultra-wide-band 0.18-mum CMOS LNA is developed following the design methodology. The measured noise figure is lower than 3.8 dB from 3 to 7.5 GHz, resulting in the excellent average noise figure of 3.48 dB. Operated on a 1.8-V supply, the LNA delivers 19.1-dB power gain and dissipates 32 mW of power. The gain-bandwidth product of the UWB LNA reaches 358 GHz, the record number for the 0.18-m CMOS broad-band amplifiers. The total chip size of the CMOS UWB LNA is 1.37 times 1.19 mm2.  相似文献   

9.
In this letter, an inductorless 0.1-8 GHz wideband CMOS differential low noise amplifier (LNA) based on a modified resistive feedback topology is proposed. Without using any passive inductors, the modified resistive feedback technique implemented with a parallel R-C feedback, an active inductor load, and neutralization capacitors achieves high gain, low noise, and good return loss over a wide bandwidth. To ensure the robustness in the system integration, electro-static discharge diodes are added to the radio frequency pads. The LNA was fabricated using a digital 90 nm CMOS technology. It achieves a 3 dB bandwidth of 8 GHz with a 16 dB voltage gain, noise figures from 3.4 dB to 5.8 dB across the whole band, and an input third-order intermodulation product (IIP3) of -9 dBm. The active area of the chip is 0.034 mm2. The chip was packaged and tested on an FR4 PCB using the chip-on-board approach.  相似文献   

10.
以一种经典的窄带低噪声放大器结构为基础,分析级联放大器的S参数,通过优化元件参数,获得了一种在3.6~4.7 GH z范围内具有低输入回波损耗、低噪声系数的放大器。采用标准的0.18μm RF CM O S工艺进行了设计和实现。芯片面积为0.6 mm×1.5 mm。测试结果表明:在3.6~4.7 GH z的范围内,该宽带低噪声放大器输入回波损耗小于-14 dB;噪声系数小于2.8 dB,增益大于10 dB。在1.8 V电源下功耗约为45 mW。  相似文献   

11.
方园  叶显武  吴洪江  刘永强 《半导体技术》2018,43(3):167-170,210
采用GaAs赝配HEMT单片微波集成电路(MMIC)工艺和堆栈偏置技术设计实现了一款Q波段低噪声放大器(LNA)芯片.该放大器采用4级级联的堆栈偏置拓扑结构,前两级电路在确保较低输入回波损耗的同时优化了放大器的噪声系数,后两级电路则采用最大增益的匹配方式,确保放大器具有良好的增益平坦度和较小的输出回波损耗.该LNA芯片最终尺寸为3 250 μm×1 500 μm,实测结果表明在40~46 GHz工作频率内放大器工作稳定,小信号增益大于23 dB,噪声系数小于3.0 dB,在4.5V工作电压下消耗电流约6 mA.此外,在片实测结果和设计结果符合良好.  相似文献   

12.
26-42 GHz SOI CMOS low noise amplifier   总被引:3,自引:0,他引:3  
A complementary metal-oxide semiconductor (CMOS) single-stage cascode low-noise amplifier (LNA) is presented in this paper. The microwave monolithic integrated circuit (MMIC) is fabricated using digital 90-nm silicon-on-insulator (SOI) technology. All impedance matching and bias elements are implemented on the compact chip, which has a size of 0.6 mm /spl times/ 0.3 mm. The supply voltage and supply current are 2.4 V and 17 mA, respectively. At 35 GHz and 50 /spl Omega/ source/load impedances, a gain of 11.9 dB, a noise figure of 3.6 dB, an output compression point of 4 dBm, an input return loss of 6 dB, and an output return loss of 18 dB are measured. The -3-dB frequency bandwidth ranges from 26 to 42 GHz. All results include the pad parasitics. To the knowledge of the author, the results are by far the best for a silicon-based millimeter-wave LNA reported to date. The LNA is well suited for systems operating in accordance to the local multipoint distribution service (LMDS) standards at 28 and 38 GHz and the multipoint video distribution system (MVDS) standard at 42 GHz.  相似文献   

13.
A novel circuit topology for a CMOS millimeter-wave low-noise amplifier (LNA) is presented in this paper. By adopting a positive-feedback network at the common-gate transistor of the input cascode stage, the small-signal gain can be effectively boosted, facilitating circuit operations at the higher frequency bands. In addition, $LC$ ladders are utilized as the inter-stage matching for the cascaded amplifiers such that an enhanced bandwidth can be achieved. Using a standard 0.18-$mu{hbox{m}}$ CMOS process, the proposed LNA is implemented for demonstration. At the center frequency of 40 GHz, the fabricated circuit exhibits a gain of 15 dB and a noise figure of 7.5 dB, while the return losses are better than 10 dB within the 3-dB bandwidth of 4 GHz. Operated at a 1.8-V supply, the LNA consumes a dc power of 36 mW.   相似文献   

14.
提出了一种基于双反馈电流复用结构的新型CMOS超宽带(UWB)低噪声放大器(LNA),放大器工作在2~12 GHz的超宽带频段,详细分析了输入输出匹配、增益和噪声系数的性能。设计采用TSMC 0.18μm RF CMOS工艺,在1.4 V工作电压下,放大器的直流功耗约为13mW(包括缓冲级)。仿真结果表明,在2~12 GHz频带范围内,功率增益为15.6±1.4 dB,输入、输出回波损耗分别低于-10.4和-11.5 dB,噪声系数(NF)低于3 dB(最小值为1.96 dB),三阶交调点IIP3为-12 dBm,芯片版图面积约为712μm×614μm。  相似文献   

15.
A switched gain controlled low noise amplifier (LNA) for the 3.1- 4.8 GHz ultra-wideband system is presented. The LNA is fabricated with the 0.18 mum 1P6M standard CMOS process. Measurement of the LNA was performed using an RF probe station. In gain mode, measured results show a noise figure of 4.68-4.97 dB, gain of 12.5-13.9 dB, and input/output return loss higher than 10/8.2 dB. The input IP3 (IIP3) at 4.1 GHz is 1 dBm, and consumes 14.6 mW of power. In bypass mode, measured results show a gain of-7.0 to -8.7 dB, and input/output return loss higher than 10/6.3 dB. The input IP3 at 4.1 GHz is 9.2 dBm, and consumes 1 muW of power.  相似文献   

16.
魏本富  袁国顺  徐东华  赵冰   《电子器件》2008,31(2):600-603
设计了一个可以同时工作在900 MHz和2.4 GHz的双频带(Dual-Band)低噪声放大器(LNA).相对于使用并行(parallel)结构LNA的双频带解决方案,同时工作(concurrent)结构的双频带LNA更能节省面积和减少功耗.此LNA在900MHz和2.4 GHz两频带同时提供窄带增益和良好匹配.该双频带LNA使用TSMC 0.25 μm 1P5M RF CMOS工艺.工作在900MHz时,电压增益、噪声系数(Noise Figure)分别是21 dB、2.9 dB;工作在2.4 GHz时,电压增益、噪声系数分别是25dB、2.8 dB,在电源电压为2.5 V时,该LNA的功耗为12.5mW,面积为1.1mm×0.9 mm.使用新颖的静电防护(ESD)结构使得在外围PAD上的保护二极管面积仅为8 μm×8 μm时,静电防护能力可达2 kV(人体模型)  相似文献   

17.
A 71-80 GHz amplifier using 0.13-mum standard mixed signal/radio frequency complementary metal-oxide-semiconductor (CMOS) technology is presented in this letter. This four-stage cascade thin-film microstrip amplifier achieves the peak gain of 7.0 dB at 75 GHz. The 3-dB frequency bandwidth range is from 71 to 80 GHz. The amplifier demonstrates the highest amplification frequency and smallest chip size among previous published millimeter-wave (MMW) 0.13-mum CMOS amplifiers.  相似文献   

18.
This letter presents the smallest reported 5 GHz receiver chip (1.3 mm2) with an on-chip antenna in standard 0.13 mum CMOS process. The miniaturization is achieved by placing the circuits inside a meandered antenna. The on-chip antenna is conjugately matched to the low noise amplifier (LNA) over a wide frequency range. The design methodology for co-design of the on-chip antenna and LNA is described. The LNA is completely differential, consumes only 8 mW of power and provides a gain of 21 dB. Design tradeoffs and measurement challenges are given.  相似文献   

19.
A variable-gain low-noise amplifier (LNA) suitable for low-voltage and low-power operation is designed and implemented in a standard 0.18 /spl mu/m CMOS technology. With a current-reused topology, the common-source gain stages are stacked for minimum power dissipation while achieving high small-signal gain. The fully integrated 5.7 GHz LNA exhibits 16.4 dB gain, 3.5 dB noise figure and 8 dB gain tuning range with good input and output return losses. The LNA consumes 3.2 mW DC power from a supply voltage of 1 V. A gain/power quotient of 5.12 dB/mW is achieved in this work.  相似文献   

20.
An RF electrostatic discharge (ESD) protection for millimeter-wave (MMW) regime applied to a 60-GHz low-noise amplifier (LNA) in mixed-signal and RF purpose 0.13-$mu{hbox{m}}$ CMOS technology is demonstrated in this paper. The measured results show that this chip achieves a small signal gain of 20.4 dB and a noise figure (NF) of 8.7 dB at 60 GHz with 65-mW dc power consumption. Without ESD protection, the LNA exhibits a gain of 20.2 dB and an NF of 7.2 dB at 60 GHz. This ESD protection using an impedance isolation method to minimize the RF performance degradation sustains 6.5-kV voltage level of the human body model on the diode and 1.5 kV on the core circuit, which is much higher than that without ESD protection ( $≪$350 V). To our knowledge, this is the first CMOS LNA with RF ESD protection in the MMW regime and has the highest operation frequency reported to date.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号