首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 625 毫秒
1.
铝-镁合金磁脉冲焊接界面形貌研究   总被引:2,自引:0,他引:2  
采用不同的焊接工艺参数对1060铝合金与AZ31镁合金进行磁脉冲焊接试验。结合铝-铝界面形貌,对比探讨磁脉冲铝-镁异种金属焊接接头界面波特征。通过SEM/EDS、纳米压痕试验,着重研究界面"熔化区"的产生机理、分布特点以及此区域的硬度变化。试验结果表明:界面呈不规则的波状结合方式,嵌入镁层的界面波远大于铝层;在"熔化区"会生成脆硬的第二相,此相分布在Al基一侧。通过调整适当的焊接工艺参数可避免此"熔化区"产生。  相似文献   

2.
利用磁脉冲方法连接3A21铝合金和20钢,通过CT进行连接接头无损检测,并采用SEM进行接头界面的徽现形貌观察和元素分布的EDS分析.结果表明,磁脉冲连接过程中,由于线圈电流感应产生的磁场力不均匀,导致整个连接过程并不是同步进行的;材料应力波与高速移动撞击点引起的界面变形联合作用,导致界面呈现出波技状结合面;Al-Fe...  相似文献   

3.
钛/铝异种金属复合结构具有比强度高、耐蚀性好等优势,在航空航天、轨道交通领域具有广阔的应用前景;但是,钛和铝两者在物理、化学和冶金学上的特性差异较大,采用传统熔化焊时极易在焊接接头中产生裂纹、气孔以及大量的脆性金属间化合物,严重恶化异种金属焊接接头的力学性能,限制了钛/铝复合结构的广泛应用。磁脉冲焊接技术是一种固相焊接技术,焊接过程中被焊材料不发生熔化,能够有效避免由于熔化带来的各种冶金缺陷。为此,本文采用磁脉冲焊接的方法,对Ti6Al4V/纯Al异种金属进行连接,系统研究了放电能量和初始间隙对接头显微组织和力学性能的影响。研究结果表明,放电能量是界面波形成的主要原因,而初始间距影响相同能量下的界面波形。初始间距1.5 mm,放电能量为24 kJ时,剪切载荷最大,为4820 N。磁脉冲焊接过程中的高速碰撞导致界面较母材发生了明显的晶粒细化。  相似文献   

4.
为了得到316L不锈钢与紫铜磁脉冲焊接接头界面处结合方式、显微组织与性能,分别对常温和深冷处理后的磁脉冲焊接接头进行微观组织观测和力学性能测定. 结果表明,316L不锈钢与紫铜经磁脉冲焊接后接头界面处产生了由应力波引起的亥尔姆霍兹失稳效应,界面处呈现波浪状,结合方式为冶金结合. 经深冷处理后的焊接接头组织和性能与未处理前基本一致,深冷处理并不能使界面处组织和结合方式发生改变. 磁脉冲焊接过程中,铜管变形以径向和周向变形为主,界面处为变形孪晶组织,不锈钢以径向变形为主,界面处为变形奥氏体组织.  相似文献   

5.
选用1060铝合金管件冲击不同表面状态下的AZ31B镁合金表面进行磁脉冲焊接试验。并对焊后接头结合形貌进行量化分析,着重研究焊接接头结合界面间的产热机制。结果表明:设定充电电压为4.2kV不变,焊接接头均表现为波纹状结合;光洁表面试件焊接后界面结合区波峰附近有微量弥散分布的熔化块;粗糙表面焊接后界面结合区出现呈片状连续分布的熔化层。由分析可知:粗糙表面凸起可以捕获更多的射流,并且会阻碍表面波沿表面传递,上述因素导致能量不能及时散失进而结合界面区温度升高最终出现熔化现象。  相似文献   

6.
本文采用钨极氩弧焊(TIG)对Ti-6Al-4V/TiAl3叠层复合材料进行平板对接焊,研究了不同焊接参数对接头组织和力学性能的影响。经热轧处理的Ti-6Al-4V /TiAl3叠层复合材料,可通过TIG焊实现可靠连接,避免接头脆化现象发生。板材底部的金属间化合物在焊接过程中受热辐射影响发生熔化,液态TiAl3和Ti反应生成Ti3Al、TiAl等,使金属间化合物周围产生Ti原子贫化区,加速了Ti原子的扩散迁移,导致接头侧面形貌分为两部分:上部为熔化再凝固的焊缝区,底部为由热辐射引起扩散连接。整体接头无明显缺陷,焊缝区为α相和针状马氏体组成的网状组织,焊接接头抗拉强度为343MPa,约为母材的90%,断口呈韧脆混合型断裂。  相似文献   

7.
相变扩散连接界面生成金属间化合物的数值模拟   总被引:23,自引:5,他引:18       下载免费PDF全文
在异种材料扩散连接的接头中,当界面上有脆性的金属间化合物产生时,接头往往表现出较差的力学性能。因此,从扩散连接的生产应用及扩散连接的理论研究出发,研究扩散连接接头的界面金属间化合物的生成规律,进而对其控制,是有着非常重要的现实意义的。扩散连接界面上金属间化合物的生成及成长机制是受扩散控制的反应扩散机制,而相变扩散连接中往往还伴随着相变,因此相变扩散连接的界面反应机制更为复杂。本文根据相变扩散连接的  相似文献   

8.
以ER4043的铝焊丝对6061铝合金和TA2纯钛进行CMT熔钎焊,采用金相显微镜、扫描电镜(SEM)和能谱分析仪(EDS)分析了焊接接头的微观组织特征,并通过拉伸试验对接头进行了力学性能的评定. 结果表明,焊接接头具有熔焊和钎焊双重性质:铝母材局部熔化,与熔化的焊丝金属混合后凝固形成焊缝;而没有熔化的钛母材通过Ti原子的扩散与焊缝金属形成金属间化合物结合层的钎焊界面. 钎焊界面处反应层可分为靠近钛板一侧的连续层Ti3Al和向焊缝内部生长的锯齿状的反应层TiAl3. 当钛板坡口角度为30°时,钎焊界面化合物生长均匀良好,接头会断裂在铝母材的热影响区,最高抗拉强度达到197.5 MPa.  相似文献   

9.
磁脉冲焊接接头界面波纹形成机理研究   总被引:1,自引:0,他引:1  
采用磁脉冲焊接工艺进行铝合金管(5A03)与棒(5A06)的连接,对焊接接头进行气密性检测和剥裂检测,观察并量化结合界面的几何参数。结果表明,当充电电压为7,7.2及7.5kV,可形成气密性良好的焊接接头;接头结合界面包括初始裂纹及良好结合两部分组成,两部分的总长度随充电电压的增加而增加;并且随充电压的增加界面良好结合段的长度是先稍有增加后急剧减小。结合界面波纹是由于撞击发生在具有初始波纹的表面上,引起结合界面产生亥尔姆霍尔兹不稳定性而形成的。  相似文献   

10.
爆炸焊接界面的结合机理   总被引:7,自引:1,他引:7       下载免费PDF全文
爆炸焊接界面虽然同时具有熔化、扩散和压力焊的特征 ,但熔化所产生的缝隙和”空洞物”大大削弱了界面的结合强度 ,在爆炸焊接过程中 ,要尽量消除熔化的影响 ,因此本文否定了爆炸焊接传统的熔焊机理 ;而扩散焊是压力焊的一种形式 ,同时扩散也只是界面由于高压产生结合的结果 ,而不是界面结合的原因 ,所以也不宜用扩散焊接解释爆炸焊接界面的成因。试验和理论研究表明 ,爆炸焊接是一种特殊的压力焊。为了获得没有熔化的微小波状的良好界面 ,爆炸焊接装药参数应取焊接窗口的下限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号