首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The drying kinetics of four varieties of chillies (Pb-Lal, Pb-Guchhedar, Pb-Surkh, and CH-1) was studied. The chillies (pricked and unpricked) were pretreated in the dip sol solution. The treated chillies were dried in an automatic weighing experimental dryer at selected temperatures (45°, 50°, 55°, 60°, and 65°C). The results indicated that drying took place in the falling rate period. Out of three models considered, Page's model was found to be the most suitable for describing the drying behavior of chillies. The dependence of drying constant on temperature was analyzed using an Arrhenius equation. The variety Pb-Lal has the maximum value of activation energy (42.59 kJ/mol), which is also reflected in the reduced drying time for this variety. The results of quality studies of dried chillies in terms of capsaicin content and coloring matter indicated that the Pb-Lal variety had acceptable capsaicin content of 532.08 µg and coloring matter of 73.8 ASTA.  相似文献   

2.
Drying as a simultaneous heat and mass transfer process can be modeled via the reaction engineering approach (REA) where the apparent activation energy of the material is established and related to its moisture content during drying. This relationship is unique as the normalized activation energies can be collapsed into a single equation irrespective of the drying conditions and dryer types. Here, REA was applied to model the drying kinetics of sawdust using convective hot air in a laboratory setup. The normalized (relative) activation energy curve generated from one drying experiment was employed to predict the drying kinetics and temperature profiles. The REA can describe well the convective drying kinetics of sawdust, and major physics of the drying process was captured well with this technique.  相似文献   

3.
《Drying Technology》2012,30(10):1029-1036
The convective drying kinetics of single droplets of aqueous glucose was measured using a single droplet drying rig. The effects of air temperature and velocity were evaluated. It was found that the droplet of aqueous glucose shrank uniformly, retaining a nearly spherical shape during drying. The normalized volume (d/d0)3 of the droplet decreased linearly with its moisture content. A constant-drying-rate-like period occurred when the moisture content of the droplet was higher than an amount of about 1.0 kg kg?1 dry solid. The diameter of the droplet decreased sharply due to the evaporation of water, while its temperature remained at a wet-bulb-like temperature in this period. When the moisture content of the droplet was lower than the above-mentioned value, the drying transferred to a falling-drying-rate-period, during which the temperature of the droplet rose quickly and approached the air temperature as drying continued. The effect of air temperature on the drying of single droplets of aqueous glucose was more pronounced when compared with that of air velocity.  相似文献   

4.
Drying and shrinkage kinetics of gooseberry, black and red currants, cherry, and blackberry were studied using a fully automated experimental apparatus, designed for continuous monitoring of the material moisture content, its temperature, and surface area. Experimental drying curves were approximated with a modified exponential model. The volume and surface area of berries were determined from the pictures taken during drying and transformed into digital images. The procedure for calculation of the object-related pixels in a two-dimensional plane to the temporal three-dimensional volume and surface area of the berries was developed. The modified exponential model was proposed to correlate the volumetric and surface area shrinkage with moisture content. Volumetric shrinkage at the end of drying was maximal (0.3) for black currant and minimal (0.45) for gooseberry.  相似文献   

5.
A promising approach for the application of ultrasound to assist in convective food drying was developed and tested in this study. The application of ultrasound is based on the transmission of ultrasonic energy as a combination of airborne contacts and through a series of solid contacts between the ultrasound element and the product tray as the ultrasonic vibration transmitting surface. A computer-based ultrasonic drying setup was built to allow continuous recording of the process variables in real time and enabled simulation of dehydration to be accomplished under controlled conditions over a range of drying parameters. Apple slices were dried using the drying setup to study the influence of ultrasound in combination with conventional hot air drying on drying kinetics and product quality.

The results from this work indicate that ultrasound can simultaneously be applied to accelerate the processing time (i.e., reduce energy consumption and increase production throughput) in conventional hot air drying without compromising product quality. It appears that the magnitude of influence of ultrasound to enhance the air-drying process depends on the process variables employed. In particular, the ability of ultrasound to improve the efficiency of the convective drying process appears to be maximized when using low temperature and high ultrasonic power level. This finding maybe very useful when there is a need to effectively dehydrate heat-sensitive products or when shorter drying times are required in order to achieve better retention of the functional and nutritional properties of the product.  相似文献   

6.
石灰调质污泥恒温干燥特性及动力学模型研究   总被引:1,自引:0,他引:1  
对添加石灰的市政污泥进行恒温干燥实验,研究在不同的石灰添加量和不同的温度条件下污泥干燥特性、有效水分扩散系数和干燥活化能。结果表明:高温干燥时,石灰添加量的增加对平均干燥速率以及有效扩散系数的提高影响显著,低温干燥时影响不显著;石灰的添加可以降低干燥活化能;基于Modified Page模型建立的通用干燥模型能准确地描述石灰调质污泥的干燥特性;模型方程预测值和实验值吻合,均方根误差为0.32%。  相似文献   

7.
Okara pellets were dried in a pneumatic tube from 78% of moisture content (w.b.) to 64% and then in a rotational drum to 3%. Time, temperature, and drum rotation were correlated to the okara darkening. The temperatures used were 130, 150, and 170°C in the pneumatic tube and 50, 60, and 70°C in the rotational dryer. The rotations used for the drum were 27 and 47 rpm. When okara was dried only in the pneumatic tube it became dark; however, when dried in both the tube and the dryer the darkening level decreased significantly. The results showed that the first drying level temperature does not influence the drying time of the combined process.  相似文献   

8.
Microwave energy drying under vacuum was investigated for alginate-starch hydrogel. Drying was conducted using 2450 MHz microwave energy at 25 mm Hg absolute pressure and different power levels; e.g., 300, 500, 700, 900, and 1100 watts. Drying was continued until final moisture content of the sample reached less than 1% wet basis. Moisture loss during drying was measured at 3-min intervals. Drying kinetics were used to describe both macroscopic and microscopic mechanisms of heat and mass transfer. Experimental drying kinetic data were fitted to a mathematical model. Experimental drying data points were fitted to an empirical model equation.  相似文献   

9.
Microwave energy drying under vacuum was investigated for alginate-starch hydrogel. Drying was conducted using 2450 MHz microwave energy at 25 mm Hg absolute pressure and different power levels; e.g., 300, 500, 700, 900, and 1100 watts. Drying was continued until final moisture content of the sample reached less than 1% wet basis. Moisture loss during drying was measured at 3-min intervals. Drying kinetics were used to describe both macroscopic and microscopic mechanisms of heat and mass transfer. Experimental drying kinetic data were fitted to a mathematical model. Experimental drying data points were fitted to an empirical model equation.  相似文献   

10.
《Drying Technology》2007,25(10):1703-1712
The effect of microwave drying technique on moisture content, moisture ratio, drying rate, drying time, effective moisture diffusivity, and porosity of spinach (Spinacia oleracea L.) were investigated. By increasing the microwave output powers (180-900 W) and the sample amounts (25-100 g), the drying time decreased from 18 to 3.5 min and increased from 7.7 to 25 min, respectively. To determine the kinetic parameters, the drying data were fitted to various models based on the ratios of the differences between the initial and final moisture contents and equilibrium moisture content versus drying time. Among of the models proposed, Page's model gave a better fit for all drying conditions applied. The activation energy was calculated using an exponential expression based on Arrhenius equation. The relationship between the drying rate constant and effective moisture diffusivity was also estimated and gave a linear relationship.  相似文献   

11.
The effect of microwave drying technique on moisture content, moisture ratio, drying rate, drying time, effective moisture diffusivity, and porosity of spinach (Spinacia oleracea L.) were investigated. By increasing the microwave output powers (180–900 W) and the sample amounts (25–100 g), the drying time decreased from 18 to 3.5 min and increased from 7.7 to 25 min, respectively. To determine the kinetic parameters, the drying data were fitted to various models based on the ratios of the differences between the initial and final moisture contents and equilibrium moisture content versus drying time. Among of the models proposed, Page's model gave a better fit for all drying conditions applied. The activation energy was calculated using an exponential expression based on Arrhenius equation. The relationship between the drying rate constant and effective moisture diffusivity was also estimated and gave a linear relationship.  相似文献   

12.
In this work, the effects of power level and sample mass on moisture content, moisture ratio, drying rate, and drying time of Turkey okra (Hibiscus esculenta L.) were investigated using microwave drying technique. Various microwave power levels ranging from to 180 to 900 W were used for drying of 100 g of okra. To investigate the effect of sample mass on drying, the samples in the range of 25 to 100 g were dried at microwave power level of 360 W. To determine the kinetic parameters, the drying data were fitted to various models based on the ratios of the differences between the initial and final moisture contents and equilibrium moisture content. Among of the models proposed, Page's model gave a better fit for all drying conditions used. The activation energy for microwave drying of okra was calculated using an exponential expression based on Arrhenius equation and was found to be 5.54 W/g.  相似文献   

13.
In this study, aqueous yeast suspensions were used to investigate the effects of drying (in an infrared heating environment) on the survival of yeast. The processes were modeled mathematically using a range of kinetics rate equations. The model parameters for each kinetic rate expression were obtained using a Matlab optimization procedure and the more suitable models describing the inactivation processes were identified. In order to provide the data for model validation, experiments were conducted using freshly prepared yeast suspensions. Additional experiments were also performed that further demonstrate the protective effects of sucrose and skim milk solids on yeast survival during drying. The simple Arrhenius equation was found to be a good model for predicting yeast survival during the control experiments, when heat was applied without dehydration occurring. Models incorporating both temperature and moisture content were more effective in describing yeast inactivation during drying. The model that gave the best predictions included the drying rate and the rate of temperature change as variables; the predicted activation energy for yeast deactivation was closest to that obtained from heating-only experiments in comparison with the other models examined. The results from this work are discussed and future prospects are suggested.  相似文献   

14.
In this investigation, the air drying characteristics of fresh and osmotically pre-treated pineapple slices in a tray dryer were studied under different operating conditions. The air velocity varied from 1.5 to 2.5 m/s and the air temperature from 40 to 70°C. The analytical solution of the second Fick's law for an infinite slab was used to calculate effective diffusion coefficients and their temperature dependence could be well represented by an Arrhenius-type equation. Comparison of the results showed that the diffusion coefficients were lower for the pre-treated fruit. By means of automatic control, it was possible to obtain drying curves under conditions of constant product temperature, which showed to be an alternative to reduce the drying time of pineapple slices.  相似文献   

15.
《Drying Technology》2013,31(7):1369-1381
Abstract

Freshly harvested rosehips (Rosa canina L.) were dehydrated in a parallel flow type air dryer at six air temperatures (30, 40, 50, 60, and 70°C) at air velocities of 0.5, 1.0, and 1.5 m/s. Drying air temperature and velocity significantly influenced drying time and energy requirement. Minimum and maximum energy requirement for drying of rosehips were determined as 6.69 kWh/kg for 70°C at 0.5 m/s, and 42.46 kWh/kg for 50°C, 1.5 m/s. In order to reduce drying energy consumption, it is recommended that the drying air velocity must not be more than 0.5 m/s and drying air temperature should be 70°C. In addition, the influence of drying air temperature and air velocity on the color of dried rosehip has been studied. Hunter L, a, b values were used to evaluate changes in the total color difference (ΔE) on dried rosehips. 70°C drying air temperature and 1 m/s air velocity were found to yield better quality product.  相似文献   

16.
Freshly harvested rosehips (Rosa canina L.) were dehydrated in a parallel flow type air dryer at six air temperatures (30, 40, 50, 60, and 70°C) at air velocities of 0.5, 1.0, and 1.5 m/s. Drying air temperature and velocity significantly influenced drying time and energy requirement. Minimum and maximum energy requirement for drying of rosehips were determined as 6.69 kWh/kg for 70°C at 0.5 m/s, and 42.46 kWh/kg for 50°C, 1.5 m/s. In order to reduce drying energy consumption, it is recommended that the drying air velocity must not be more than 0.5 m/s and drying air temperature should be 70°C. In addition, the influence of drying air temperature and air velocity on the color of dried rosehip has been studied. Hunter L, a, b values were used to evaluate changes in the total color difference (ΔE) on dried rosehips. 70°C drying air temperature and 1 m/s air velocity were found to yield better quality product.  相似文献   

17.
During the last decades, growing attention has been given to theoretical and experimental studies of drying behavior of single droplet containing solids. This research interest is motivated by the need for fundamental understanding of the drying phenomena in extensively used technological processes like spray drying, fluidized bed drying, pneumatic drying, etc., at drop-wise and particulate levels. The present literature review summarizes the developed theoretical models of single droplet drying kinetics, discovers their benefits and deficiencies, and identifies prospects for future research.  相似文献   

18.
The nonisothermal drying kinetics of wheat straw and corn stalk has been studied by thermogravimetry. The experimental data have been obtained in order to fit to semitheoretical models widely used to describe drying behavior of agricultural products. Nonisothermal drying models—Newton, Henderson and Pabis, logarithmic, and Page—were evaluated based on the coefficient of determination (R 2), reduced chi-square (χ 2), and root means square error (RMSE). Page's model has been found to be the best for describing the nonisothermal drying characteristics of wheat straw and corn stalk. The activation energy values of wheat straw and corn stalk are determined to be 14.144 and 6.113 kJ mol?1, respectively.  相似文献   

19.
Solid particles were dried in the riser of circulating fluidized bed with internals to study the drying kinetics. Experiments were conducted in a circulating fluidized bed, having perforated plates as internals covering wide range in the operating parameters. The effects of various operating parameters, i.e., initial moisture content, temperature, and flow rate, of the heating medium and solid circulation rate on the rate of drying have been critically examined. It has been observed from the present investigation that the presence of internals enhances the solids holdup in the riser of circulating fluidized bed. The drying efficiency of a circulating fluidized bed with internals has been compared with the drying performance of a circulating fluidized bed without internals under the same operating conditions.  相似文献   

20.
Solid particles were dried in the riser of circulating fluidized bed with internals to study the drying kinetics. Experiments were conducted in a circulating fluidized bed, having perforated plates as internals covering wide range in the operating parameters. The effects of various operating parameters, i.e., initial moisture content, temperature, and flow rate, of the heating medium and solid circulation rate on the rate of drying have been critically examined. It has been observed from the present investigation that the presence of internals enhances the solids holdup in the riser of circulating fluidized bed. The drying efficiency of a circulating fluidized bed with internals has been compared with the drying performance of a circulating fluidized bed without internals under the same operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号