首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The influences of B2O3 and CuO (BCu, B2O3: CuO = 1:1) additions on the sintering behavior and microwave dielectric properties of LiNb0.6Ti0.5O3 (LNT) ceramics were investigated. LNT ceramics were prepared with conventional solid-state method and sintered at temperatures about 1,100 °C. The sintering temperature of LNT ceramics with BCu addition could be effectively reduced to 900 °C due to the liquid phase effects resulting from the additives. The addition of BCu does not induce much degradation in the microwave dielectric properties. Typically, the excellent microwave dielectric properties of εr = 66, Q × f = 6,210 GHz, and τ f  = 25 ppm/oC were obtained for the 2 wt% BCu-doped sample sintered at 900 °C. Chemical compatibility of silver electrodes and low-fired samples has also been investigated.  相似文献   

2.
Phase purity, microstructure, sinterability and microwave dielectric properties of BaCu(B2O5)-added Li2ZnTi3O8 ceramics and their cofireability with Ag electrode were investigated. A small amount of BaCu (B2O5) can effectively reduce the sintering temperature from 1075°C to 925°C, and it does not induce much degradation of the microwave dielectric properties. Microwave dielectric properties of ε r = 23·1, Q × f = 22,732 GHz and τ f = − 17·6 ppm/°C were obtained for Li2ZnTi3O8 ceramic with 1·5 wt% BaCu(B2O5) sintered at 925°C for 4 h. The Li2ZnTi3O8 +BCB ceramics can be compatible with Ag electrode, which makes it a promising microwave dielectric material for low-temperature co-fired ceramic technology application.  相似文献   

3.
The Ba3(VO4)2–x wt% Co2O3 (x?=?0.5–5) ceramics were prepared by the solid state reaction method in order to reduce the sintering temperature. The effects of the Co2O3 additions on the phase composition, microstructures, sintering characteristics and microwave dielectric properties of Ba3(VO4)2 ceramics are investigated by an X-ray diffractometer, a scanning electron microscope and a network analyzer. As a result, the Q?×?f value of 54,000 GH, the ε r of 14.6 and the τf value of +58.5 ppm/°C were obtained in the sample of the Ba3(VO4)2–3 wt% Co2O3 ceramic sintered at the temperature of 925 °C, which is capable to co-fire with electrode metal of high conductivity such as Ag (961 °C). Moreover, the Q?×?f values of the sample with Co2O3 higher than that of 3 wt% additions decreased because of the formation of Ba2V2O7 phase.  相似文献   

4.
《Materials Letters》2004,58(22-23):2829-2833
The microwave dielectric properties of Sm(Co1/2Ti1/2)O3 ceramics have been investigated. Sm(Co1/2Ti1/2)O3 ceramics were prepared by conventional solid-state route. The dielectric constant values (εr) saturated at 23.5–25.5. The Q×f values of 21,500–76,000 (at 10 GHz) can be obtained when the sintering temperatures are in the range of 1300–1420 °C. The temperature coefficient of resonant frequency τf was a function of sintering temperature. The εr value of 25.5, Q×f value of 76,000 (at 10 GHz) and τf value of −16.3 ppm/°C were obtained for Sm(Co1/2Ti1/2)O3 ceramics sintered at 1360 °C for 4 h. For applications of high selective microwave ceramic resonator, filter and antenna, Sm(Co1/2Ti1/2)O3 is proposed as a suitable material candidate.  相似文献   

5.
Ternary perovskite ceramics of Pb[(Zr0.5Ti0.5)0.8−x (Mg1/3Nb2/3)0.2+x]0.98Nb0.02O3.01 (PZTMN, x = −0.075, −0.05, −0.025, 0, 0.025, 0.05, and 0.075 ), are synthesized via dry–dry method. B-site precursors of PZTMN ([(Zr0.5Ti0.5)0.8−x (Mg1/3Nb2/3)0.2+x ]0.98Nb0.02O2.01, ZTMN) can be synthesized via a two-step solid state reaction method. The first calcination temperature is 1,300 °C, and the second is not higher than 1,360 °C. Incorporation of magnesium and niobium ions promotes the formation of the single phase solid solution with ZrTiO4 structure. Single phase perovskite PZTMN is formed at 780 °C, much lower than that in conventional process. Dense ceramics can be sintered at about 1,260 °C with dielectric and piezoelectric properties comparable to that of wet–dry method and higher than that of conventional method. It seems that B-site precursor method is cost effective in preparation of ternary piezoelectric ceramics.  相似文献   

6.
Li6Mg7Ti3O16 ceramics were prepared by the conventional solid-state method with 1–5 wt% LiF as the sintering aid. Effects of LiF additions on the phase compositions, sintering characteristics, micro-structures and microwave dielectric properties of Li6Mg7Ti3O16 ceramics were investigated. The LiF addition could effectively lower the sintering temperature of Li6Mg7Ti3O16 ceramics from 1550 to 900 °C. For different LiF-doped compositions, the optimum dielectric permittivity (ε r ) and quality factor (Q·f) values first increased and then decreased with the increase of LiF contents, whereas the temperature coefficient of resonant frequency (τ f ) fluctuated between ??14.39 and ??8.21 ppm/°C. Typically, Li6Mg7Ti3O16 ceramics with 4 wt% LiF sintered at 900 °C exhibited excellent microwave dielectric properties of ε r ?=?16.17, Q·f?=?80,921 GHz and τ f ?=???8.21 ppm/°C, which are promising materials for the low temperature co-fired ceramics applications.  相似文献   

7.
The effect of CuO and B2O3 co-doping on the sintering behavior, microstructure and microwave dielectric properties of tungsten bronze type Ba4Nd9.3Ti18O54 (BNT) ceramics has been investigated by means of a traditional solid-state mixed oxide route. On the one hand, it was indicated that the mixture of CuO and B2O3 is an effective sintering aid for BNT matrix compositions owing to the existence of a low-temperature eutectic reaction. On the other hand, it was found that the addition of CuO and B2O3 has an obvious effect on microwave dielectric properties of BNT ceramics, depending on the amount of sintering aids, the sample density and microstructure. The liquid phases from sintering aids can promote densification, but simultaneously induce grain growth which tends to decrease the sintering driving force. BNT ceramics doped with 3 wt% CuO–B2O3 mixture can be well sintered at 950°C for 4 h and still exhibit relatively good microwave dielectric properties.  相似文献   

8.
The Mg3B2O6 ceramics with lithium magnesium zinc borosilicate (LMZBS) glass were prepared at a lower sintering temperature. The effects of the glass addition on the densification, phase development, microstructure and microwave dielectric properties of the Mg3B2O6 ceramics were investigated. The addition of LMZBS glass improved the densification and lowered the sintering temperature of Mg3B2O6 ceramics from 1,300 to 950 °C. X-ray diffraction patterns showed that Mg3B2O6 transformed into Mg2B2O5 and a new phase, Li2ZnSiO4, crystallized from the glass phase. Because of the high dielectric performance of these phases, Mg3B2O6 mixed with 55 wt% LMZBS sintered at 950 °C for 3 h had εr = 6.8, Q × f = 50,000 GHz, and τf = ?64 ppm/°C at 7.28 GHz. The chemical compatibility of ceramic-glass composites with Ag was also investigated for LTCC.  相似文献   

9.
Ca4-xMgxLa2Ti5O17 ceramics were prepared by a solid state ceramic route for x = 0, 0.5, 1, 2, 3 and 4. The structure and microstructure of the ceramics were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction results show that the Ca4-x Mg x La2Ti5O17 adopts an orthorhombic crystal structure with no secondary phase observed for x from 0 to 0.5. Secondary phase, MgTiO3 occurs with further increasing doping level (1 ≤ x ≤ 3). When x = 4, mixture phases La0.66TiO2.993, MgTiO3 and a trace of unknown phase coexist. Ca4La2Ti5O17 ceramic exhibits a relative permittivity (εr) ~ 65, quality factor (Q × f) ~13,338 GHz (at ~4.75 GHz), and temperature coefficient of resonant frequency (τ f ) ~ 165 ppm/°C. The sintering temperature was distinctly reduced from 1,580 °C for x = 0 to 1,350 °C for x = 4. With increasing Mg content, εr and τf obviously decrease, while Q × f value initially decreases and then increases. The ceramic for x = 2 shows εr ~ 50, Q × f ~ 9,451 and τ f  ~ 62.5 ppm/°C. By the complete replacement of Ca with Mg, Mg4La2Ti5O17 ceramic sintered at 1,350 °C for 4 h combines a high dielectric permittivity (ε r  = 31), high quality factor (Q × f ~ 15,021) and near-zero temperature coefficient of resonant frequency (τ f  ~ 4.0 ppm/°C). The materials are suitable for microwave applications.  相似文献   

10.
Crystal structure and dielectric properties of Zn3Mo2O9 ceramics prepared through a conventional solid-state reaction method were characterized. XRD and Raman analysis revealed that the Zn3Mo2O9 crystallized in a monoclinic crystal structure and reminded stable up to1020 °C. Dense ceramics with high relative density (~ 92.3%) were obtained when sintered at 1000 °C and possessed good microwave dielectric properties with a relative permittivity (ε r ) of 8.7, a quality factor (Q?×?f) of 23,400 GHz, and a negative temperature coefficient of resonance frequency (τ f ) of around ??79 ppm/°C. With 5 wt% B2O3 addition, the sintering temperature of Zn3Mo2O9 ceramic was successfully lowered to 900 °C and microwave dielectric properties with ε r ?=?11.8, Q?×?f?=?20,000 GHz, and τ f = ??79.5 ppm/°C were achieved.  相似文献   

11.
The microstructure, electrical properties, and DC-accelerated aging behavior of the ZnO-V2O5-Mn3O4 ceramics were investigated at different sintering temperatures of 850–925°C. The microstructure of the ZnO-V2O5-Mn3O4 ceramics consisted of ZnO grain as a primary phase, and Zn3(VO4)2 which acts as a liquid-phase sintering aid, in addition to Mn-rich phase as secondary phases. The maximum value (3,172 V/cm) and minimum value (977 V/cm) of breakdown field were obtained at sintering temperature of 850 and 900°C, respectively. The nonlinear coefficient exhibited the highest value, reaching 30 at 925°C and the lowest value, reaching 4 at 850°C. The optimum sintering temperature was 900°C, which exhibited not only high nonlinearity with 24 in nonlinear coefficient, but also the high stability, with %ΔE1mA = −0.9% and %∆α = −12.5% for DC-accelerated aging stress of 0.85 E1mA/85°C/24 h.  相似文献   

12.
In the present work, a novel MgAl2Ti3O10 ceramic was obtained using a traditional solid-state reaction method. X-ray diffraction and energy dispersive spectrometer showed that the main MgAl2Ti3O10 phase was formed after sintered at 1300–1450 °C. With rising the sintering temperature from 1300 to 1450 °C, the bulk density (ρ), relative permittivity (ε r ) and Q?×?f value firstly increased, reached the maximum values (3.61 g/cm3, 14.9, and 26,450 GHz) and then decreased. The temperature coefficient of resonator frequency (τ f ) showed a slight change at a negative range of ??94.6 to ??83.7 ppm/°C. When the sintering temperature was 1400 °C, MgAl2Ti3O10 ceramics exhibited the best microwave dielectric properties with Q?×?f?=?26,450 GHz, ε r ?=?14.9 and τ f ?=???83.7 ppm/°C.  相似文献   

13.
CuO-doped lead-free ceramics based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) and barium zirconate titanate (Ba(Zr0.07Ti0.93)O3, BZT) were prepared via a multi-step solid-state reaction process. The BNT–BZT with CuO dopant ceramics sintered at 1150–1180 °C for 2 h in air showed a pure perovskite structure. SEM images reveal that a small amount of CuO (<2 mol%) play a significant role on the microstructure to improve its sintering attributes, while it will degrade when the dopant is added beyond 2 mol%. The dielectric and piezoelectric properties of CuO-doped BNT–BZT ceramics were evaluated. At room temperature, the sample doped with 2 mol% CuO shows quite good properties such as a high piezoelectric constant (d 33 ∼156.5 pC/N) and a high electromechanical coupling factor (k t ∼52%). The depolarization temperature increased dramatically and the maximum permittivity temperature decreased slightly.  相似文献   

14.
The microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics doped by Pr6O11 in the content range of 0–5.49 wt% were investigated at different sintering temperatures (1,100, 1,150, 1,175, 1,200 °C). The increase of sintering temperature leads to more dense ceramics, which increases the nonlinear property, whereas it decreases the voltage-gradient and leakage current. With increasing Pr6O11 content, the breakdown voltage increases because of the decreases of ZnO grain size. The improvement of non linear coefficient together with the decrease of leakage current are related to the uniformly distribution of secondary phases along the grain boundaries of the ZnO. The varistors sintered at 1,175 °C with the 3.37 wt% Pr6O11 doping possess the best electrical properties: the varistor voltage, nonlinear coefficient, and leakage current are 340 V/mm, 46 and 0.63 μA, respectively.  相似文献   

15.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

16.
A novel microwave dielectric ceramics Bi(Sc1/3Mo2/3)O4 with low firing temperature were prepared via the solid reaction method. The specimens have been characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy and DC conductivity. The Bi(Sc1/3Mo2/3)O4 ceramics showed B-site ordered Scheelite-type structure with space group C2/c. Raman analysis indicated that prominent bands were attributed to the normal modes of vibration of MoO4 2? tetrahedra. The dielectric loss of Bi(Sc1/3Mo2/3)O4 ceramics can be depended strongly the bulk conductivity by DC measurement. The superior microwave dielectric properties are achieved in the Bi(Sc1/3Mo2/3)O4 ceramic sintered at 875 °C/4 h, with dielectric constant?~?25, Q?×?f ~?51,716 GHz at 6.4522 GHz and temperature coefficient of resonance frequency ~???70.4 ppm/°C. It is a promising microwave dielectric material for low-temperature co-fired ceramics technology.  相似文献   

17.
ZnTa2O6 ceramics with various amount of Al2O3 additive were synthesized by a conventional mixed-oxide route. The grain growth of ZnTa2O6 ceramics was accelerated with Al2O3 additive. However, excessive addition (>1.0 wt%) of Al2O3 leaded to abnormal grain growth. With Al2O3 addition, the Al2O3 additive did not solubilized into ZnTa2O6 structure but resulted in forming the second phase. The Al2O3 addition resulted in the lower sintering temperature of ZnTa2O6 ceramics and improved microwave dielectric properties. The dielectric constant (εr) of the samples did not change much and ranged from 32.41 to 34.33 with different amount of Al2O3 addition. The optimized quality factor (Q × f) was higher than 70,000 GHz as a result of the denser ceramics. The temperature coefficient of resonant frequency (τ f ) of the doped ZnTa2O6 ceramics could be optimized to near-zero.  相似文献   

18.
The electrical properties and dielectric response in Na1/2Y1/2Cu3Ti4O12 ceramic prepared by conventional solid-state reaction method and sintered at 1,090 °C for 5 h were investigated as functions of frequency and temperature. Main phase of Na1/2Y1/2Cu3Ti4O12 with CaCu3Ti4O12-like crystallographic structure and CuO secondary phase were observed in the X-ray diffraction pattern. Abnormal grain growth was observed just as observed in CaCu3Ti4O12 ceramics. The Na1/2Y1/2Cu3Ti4O12 ceramic exhibits a high ε′ of ~2.04 × 104 at 20 °C and 1 kHz and low tan δ (with the minimum 0.080 at 5 kHz). Impedance spectroscopy analysis reveals that Na1/2Y1/2Cu3Ti4O12 ceramic is electrically heterogeneous, consisting of semiconducting grains and insulating grain boundaries. Giant ε′ response in Na1/2Y1/2Cu3Ti4O12 ceramic is therefore attributed to an internal barrier layer capacitor effect.  相似文献   

19.
The Zn2SiO4 ceramics with the addition of BaO and B2O3 are fabricated by traditional solid-state preparation process at a sintering temperature of 900 °C. The introduction of BaO and B2O3 to the binary system ZnO-SiO2 is achieved by adding 10 and 20 wt. % flux BB to the mixed ZnO-SiO2 ceramic powders pre-sintered at 1,100 °C, respectively. The chemical composition of the flux BB (50 wt.%BaO-50 wt.% B2O3) is located at a liquid phase zone with a temperature range of about 869–900 °C in the binary diagram BaO-B2O3. In addition, the introduction of BaO and B2O3 to the binary system ZnO-SiO2 is also achieved by the means of a chemical combination of H2SiO3, H3BO3, ZnO and Ba(OH)2·8H2O, which can result in the formation of the hydrated barium borates with low melting characteristics. In turn, by the liquid sintering aid of the barium borate melts, the preparation process of the Zn2SiO4 ceramics can be further simplified. In the two preparation methods, the Zn2SiO4 ceramics with the 1.5–2.0 ZnO/SiO2 molar ratios and the addition of a 10 wt. % flux BB can show good dielectric properties whereas the bending strength mainly depends on the microstructure of the Zn2SiO4 ceramics and SiO2 content in the composition of the specimen.  相似文献   

20.
New dielectric ceramics in the SrLa4−xSmxTi5O17 (0 ≤ x ≤ 4) composition series were prepared through a solid state mixed oxide route to investigate the effect of Sm+3 substitution for La+3 on the phase, microstructure and microwave dielectric properties. At x = 0–3, all the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1500–1580 °C. At x = 4, a mixture of Sm2Ti2O7 and SrTiO3 formed. The maximum Sm+3-containing single phase ceramics, SrLaSm3Ti5O17, exhibited relative permittivity (εr) = 42.6, temperature coefficient of resonant frequency (τ f ) = −96 ppm/oC and quality factor (Q u f o ) = 7332 GHz. An analysis of results presented here indicates that SrLa4−xSmxTi5O17 ceramics, exhibiting τ f  ~ 0 and εr ~ 53 could be achieved at x ~ 1.4 but at the cost of decrease in Q u f o .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号