首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A modified interface crack with slightly undulating profile, which has a good agreement with reality and retains the simplicity of a mathematical model, is presented in this paper. This model is utilized to reveal some of the properties of uneven cracks, especially the stress intensity factors. As we know, many failures occurring in the interface are induced by crucial lateral stresses which are parallel to the interface. Hence, when the lateral stresses are much stronger than others, the corresponding solution is also derived for understanding how the lateral stresses affect the stress intensity factors as the crack is uneven. In the present paper, the Hilbert's problem enables different perturbed-interface cracks to be solved in an unified manner. Muskhelishvili's potential formulation is used to derive, by means of a perturbation analysis technique, an homogeneous and general Hilbert's problem.  相似文献   

2.
The stress fields near the tip of a matrix crack terminating at and perpendicular to a planar interface under symmetric in-plane loading in plane strain are investigated. The bimaterial interface is formed by a linearly elastic material and an elastic power-law creeping material in which the crack is located. Using generalized expansions at the crack tip in each region and matching the stresses and displacements across the interface in an asymptotic sense, a series asymptotic solution is constructed for the stresses and strain rates near the crack tip. It is found that the stress singularities, to the leading order, are the same in each material; the stress exponent is real. The oscillatory higher-order terms exist in both regions and stress higher-order term with the order of O(r°) appears in the elastic material. The stress exponents and the angular distributions for singular terms and higher order terms are obtained for different creep exponents and material properties in each region. A full agreement between asymptotic solutions and the full-field finite element results for a set of test examples with different times has been obtained.  相似文献   

3.
A versatile hybrid finite element scheme consisting of special crack-tip elements and crack face contact elements is developed to analyse a partially closed interface crack between two dissimilar anisotropic elastic materials. The crack-tip element incorporates higher-order asymptotic solutions for an interfacial crack tip. These solutions are obtained from complex variable methods in Stroh formalism. For a closed interfacial crack tip, a generalized contact model in which the crack-tip oscillation is eliminated is adopted in the calculation. The hybrid finite element modelling allows the stress singularity at an open and closed crack tip to be accurately treated. The accuracy and convergence of the developed scheme are tested with respect to the known interface crack solutions. Utilizing this numerical scheme, the stress intensity factors and contact zone are calculated for a finite interface crack between a laminated composite material.  相似文献   

4.
We present a boundary integral formulation for anisotropic interface crack problems based on an exact Green's function. The fundamental displacement and traction solutions needed for the boundary integral equations are obtained from the Green's function. The traction-free boundary conditions on the crack faces are satisfied exactly with the Green's function so no discretization of the crack surfaces is necessary. The analytic forms of the interface crack displacement and stress fields are contained in the exact Green's function thereby offering advantage over modeling strategies for the crack. The Green's function contains both the inverse square root and oscillatory singularities associated with the elastic, anisotropic interface crack problem. The integral equations for a boundary element analysis are presented and an example problem given for interface cracking in a copper-nickel bimaterial.  相似文献   

5.
The asymptotic form of the stress and displacement components near the tip of a straight crack in a generally rectilinear anisotropic plane elastic body are resolved. As in the isotropic analysis, the solutions for the stresses display a r?12 dependence, where r is the distance from the tip, while the angular dependence depends upon the anisotropy in a complicated way. The effect of some special anisotropies upon these solutions is fully explored. Finally, these solutions are used to solve the problem of a finite length straight crack in an anisotropic elastic plane when uniform stresses are applied far from the crack. This solution includes obtaining the stress intensity factors, and the nature and magnitude of the crack face displacements.  相似文献   

6.
On the basis of modelling bicrystal deformation, using three-dimensional, anisotropic finite elements, the problem of a crystallographic crack approaching the interface in a [111] tilt bicrystals of 90? misfit angle under shear loads is solved. The influence of thickness direction material heterogeneity across the interface on the distribution of the stresses, strains and crack sliding displacements along the crack front near the interface has been revealed. As the crack approaches the interface, those mechanical parameters are considerably changed by the heterogeneity across the interface. Remarkable variations in the stresses and strains along the crack front have also been identified and are referred to the different constraint across the thickness. The maximum stress may shift from the crack tip to the interface ahead of it, where, as suggested by numerical results and previous experimental observation, a new fracture process core may be activated. The interface-induced crack shielding or antishielding under mode II and III loading is analyzed and discussed.  相似文献   

7.
It is well known that microcracking in brittle materials results in a reduction of the stress intensity factor (SIF) and energy release rate (ERR). The reduced SIF or ERR represents crack tip shielding which is of significant interest to micromechanics and material science researchers. However, the effect of microcracking on the SIF and ERR is a complicated subject even for isotropic homogeneous materials, and becomes much more formidable in case of interface cracks in bonded dissimilar solids. To unravel the micromechanics of interface crack tip shielding in bonded dissimilar anisotropic solids, an interface crack interacting with arbitrarily oriented subinterface microcracks in bonded dissimilar anisotropic materials is studied. After deducing the fundamental solutions for a subinterface crack under concentrated normal and tangential tractions, the present interaction problem is reduced to a system of integral equations which is then solved numerically. A J‐integral analysis is then performed with special attention focused on the J2‐integral in a local coordinate system attached to the microcracks. Theoretical and numerical results reassert the conservation law of the J‐integral derived for isotropic materials 1 , 2 also to be valid for bonded dissimilar anisotropic materials. It is further concluded that there is a wastage when the remote J‐integral transmits across the microcracking zone from infinity to the interface macrocrack tip. In order to highlight the influence of microstructure on the interfacial crack tip stress field, the crack tip SIF and ERR in several typical cases are presented. It is interesting to note that the Mode I SIF at the interface crack tip is quite different from the ERR in bonded dissimilar anisotropic materials.  相似文献   

8.
Complete stress and electric fields near the tip of a conducting crack between two dissimilar anisotropic piezoelectric media, are obtained in terms of two generalized bimaterial matrices proposed in this paper. It is shown that the general interfacial crack-tip field consists of two pairs of oscillatory singularities. New definitions of real-valued stress and electric field intensity factors are proposed. Exact solutions of the stress and electric fields for basic interface crack problems are obtained. An alternate form of the J integral is derived, and the mutual integral associated with the J integral is proposed. Closed form solutions of the stress and electric field intensity factors due to electromechanical loading and the singularities for a semi-infinite crack as well as for a finite crack at the interface between two dissimilar piezoelectric media, are also obtained by using the mutual integral.  相似文献   

9.
In order to elucidate the role of plasticity on interface crack initiation from a free edge and crack propagation in a nano-component, delamination experiments were conducted by a proposed nano-cantilever bend method using a specimen consisting of ductile Cu and brittle Si and by a modified four-point bend method. The stress fields along the Cu/Si interface at the critical loads of crack initiation and crack propagation were analyzed by the finite element method. The results reveal that intensified elastic stresses in the vicinity of the interface edge and the crack tip are very different, although the Cu/Si interface is identical in both experiments. The plasticity of Cu was then estimated on the basis of the nano-cantilever deflection measured by in situ transmission electron microscopy. The plasticity affects the stress fields; the normal stress near the interface edge is intensified while that near the crack tip is much reduced. Both the elasto-plastic stresses are close to each other in the region of about 10 nm. This suggests that the local interface fracture, namely, the crack initiation at the interface edge and the crack propagation along the interface, is governed by elasto-plastic normal stress on the order of 10 nm.  相似文献   

10.
Due to the oscillatory characteristics of stresses near interface crack tips, the stress intensity factor Ki, i = I, II, III, should be modified and the energy release rate Gi, i = 1, 2, 3, of each fracture mode calculated by the virtual crack closure method may not exist. Based upon a near-tip solution for interface cracks between dissimilar anisotropic media, a proper definition for the stress intensity factors and energy release rates for general anisotropic bimaterial interface cracks is provided in this paper, which is applicable for the delaminated composites. Moreover, this definition can be reduced to the classical definition for a crack tip in homogeneous media when the two materials become the same. A simple quadratic relation between Ki and Gi is derived, which is further reduced explicitly for orthotropic bimaterials. The influence of fiber orientation and the coupling among opening, shearing and tearing mode fracture are studied numerically. The results show that the classical stress intensity factors and energy release rates are still the dominant stress intensity and energy release rate of the mixed mode condition induced by the interface.  相似文献   

11.
In this paper the near tip solutions for interface corners written in terms of the stress intensity factors are presented in a unified expression. This single expression is applicable for any kinds of interface corners including corners and cracks in homogeneous materials as well as interface corners and interface cracks lying between two dissimilar materials, in which the materials can be any kinds of linear elastic anisotropic materials or piezoelectric materials. Through this unified expression of near tip solutions, the singular orders of stresses and their associated stress/electric intensity factors for different kinds of interface problems can be determined through the same formulae and solution techniques. This unified feature of solving interface problems is then implemented numerically through several different interface problems. Moreover, in order to improve the accuracy and efficiency of numerical computation, a special boundary element based upon the Green's function of bimaterials is introduced in this paper.  相似文献   

12.
Dr.-Ing. H. Yuan 《Acta Mechanica》1995,109(1-4):207-226
Summary In this work the asymptotic near-tip stress and velocity fields of a crack propagating steadily and quasi-statically along a ductile interface are presented for plane stress cases. The elastic-plastic materials are characterized by the J2-flow theory with linear plastic hardening. The solutions are assumed to be of variable-separable form with a power singularity in the radial distance to the crack tip. It is found that two distinct solutions exist with slightly different singularity strengths and very different mixities on the interface ahead of the crack tip. One of the solutions corresponds to a tensile-like mode and the other corresponds to a shear-like mode. An interface will change the near-tip fild of the tensile solution obviously, whereas the shear-like solution maintains its original structure as in homogeneous materials. In cases the elastic bimaterial parameter differs from zero, the two solutions can coalesce at some high strain-hardening. An interface between two high strain-hardening materials only slightly affects the stress and velocity distribution around the tip, whereas the singularity strength deviates from the homogeneous solutions. The strength of the singularity is predominantly determined by the smaller strain-hardening material. Poisson's ratio affects variation of the singularity as a function of strain-hardening slightly if the coalescing point of the variable-separable solution is not approached. Only for the very distinct elastic moduli the near-tip field approaches the rigid interface solution.  相似文献   

13.
A complete form of stress and electric displacement fields in the vicinity of the tip of an interfacial crack, between two dissimilar anisotropic piezoelectric media, is derived by using the complex function theory. New definitions of real-valued stress and electric displacement intensity factors for the interfacial crack are proposed. These definitions are extensions of those for cracks in homogeneous piezoelectric media. Closed form solutions of the stress and electric displacement intensity factors for a semi-infinite crack as well as for a finite crack at the interface between two dissimilar piezoelectric media are also obtained by using the mutual integral.  相似文献   

14.
Closed form expressions are obtained for the stresses at a crack tip when a crack is approaching a welded boundary (or a free surface) and when it has just passed through the interface. The solutions which are obtained in terms of a small parameter, the distance from or through the interface, are given in explicit form for the mode 3 situation and for some mode 1 and 2 cases. The importance of the change of stress singularity when the crack meets the interface is demonstrated.  相似文献   

15.
Interaction between screw dislocations and a partially debonded interface in cylindrically anisotropic composites subjected to uniform stress at infinity is investigated in this paper. Using Muskhelishvili’s complex variable method, the closed forms of complex potentials are obtained for a screw dislocation and a screw dislocation dipole located inside either matrix or inhomogeneity. Explicit expressions of stress intensity factors at the crack tips, image forces and image torques acting on dislocation or the center of dipole are provided. The results show that the crack and dislocation geometry combination plays an important role in the interaction between screw dislocations and interface crack. Furthermore, it is found that the anisotropy of solids may change the shielding and anti-shielding effects arising from screw dislocations and the equilibrium position of screw dislocations. The presented solutions are valid for anisotropic, orthotropic or isotropic composites and can be reduced to some novel or previously known results.  相似文献   

16.
W. T. Ang 《Acta Mechanica》1987,70(1-4):97-109
Summary The problem of an anisotropic elastic strip containing a crack which is opened by stresses suddenly applied on the crack faces is considered here. The problem is reduced to a set of simultaneous Fredholm integral equations of the second kind which may be solved iteratively. Once the solutions of these integral equations are obtained, the dynamic stress intensity factors may be evaluated numerically. Numerical results are obtained for a particular transversely isotropic strip.With 1 Figure  相似文献   

17.
A general solution for the stresses and displacements of collinear cracks in an infinite homogeneous anisotropic medium subjected to uniform loading at infinity has been given in this paper by using the Stroh's formulation. The solutions are valid not only for plane problems but also for antiplane problems and the problems whose inplane and antiplane deformations couple each other. Two special collinear crack problems are solved explicitly: (1) two collinear cracks, (2) an infinite row of evenly spaced collinear cracks. A closed form solution of the stresses and displacements in the entire domain is obtained. Through the use of identities developed in the literature, the stress intensity factors, crack opening displacements and energy release rate are expressed in real form, which are valid for any kind of anisotropic materials including the degenerate materials such as isotropic materials. The simple explicit form solutions for the crack opening displacements and energy release rate reveal that the effect of anisotropy is totally determined by the fundamental elasticity matrix L. The relation between the stress intensity factors and energy release rate is obtained in quadratic form and related to L.  相似文献   

18.
The non-singular terms in the series expansion of the elastic crack-tip stress field, commonly referred to as the elastic T-stresses, play an important role in fracture mechanics in areas such as the stability of a crack path and the two-parameter characterization of elastic-plastic crack-tip deformation. In this paper, a first order perturbation analysis is performed to study some basic properties of the T-stress variation along a slightly wavy 3D crack front. The analysis employs important properties of Bueckner-Rice 3D weight function fields. Using the Boussinesq-Papkovitch potential representation for the mode I weight function field, it is shown that, for coplanar cracks in an infinite isotropic and homogeneous linear elastic body, the mean T-stress along an arbitrary crack front is independent of the shape and size of the crack. Further, a universal relation is discovered between the mean T-stress and the stress field at the same crack front location under the same loading but in the absence of a crack. First-order-accurate solutions are given for the T-stress variation along a slightly wavy crack front with nearly circular or straight confifurations. Specifically, cosine wave functions are adopted to describe smooth polygonal and slightly undulating planar crack shapes. The results indicate that T 11, the 2D T-stress component acting normal to the crack front, increases with the curvature of the crack front as it bows out but T 33, acting parallel to the crack front, decreases with the crack front curvature.  相似文献   

19.
Delamination along an interface between dissimilar materials is the primary cause of failure in microstructures like electronic packages, micro-electro-mechanical systems (MEMS), and so on. Fracture mechanics is a powerful tool for the evaluation of delamination. However, many materials used in microstructures such as composite materials and single crystals are anisotropic materials. Stress intensity factors of an interface crack between dissimilar anisotropic materials, which were proposed by Hwu, are useful for evaluating the reliability of microstructures. However, numerical methods that can analyze the stress intensity factors of an interface crack between anisotropic materials have not been developed. We propose herein a new numerical method for the analysis of an interface crack between dissimilar anisotropic materials. The stress intensity factors of an interface crack are based on the generalized plane strain condition. The energy release rate is obtained by the virtual crack extension method in conjunction with the finite element method for the generalized plane strain condition. The energy release rate is separated into individual modes of the stress intensity factors KI, KII, and KIII, using the principal of superposition. The target problem to be solved is superposed on the asymptotic solution of displacement in the vicinity of an interface crack tip, which is described using the Stroh formalism. Analyses of the stress intensity factors of center interface cracks between semi-infinite dissimilar anisotropic media subjected to concentrated self-balanced loads on the center of crack surfaces and to uniform loads are demonstrated. The present method accurately provides mode-separated stress intensity factors using relatively coarse meshes for the finite element method.  相似文献   

20.
The antiplane strain problem of straight interface crack propagation between two elastic half-spaces under arbitrary variable loading is considered. The crack edge is specified as an arbitrary smooth function of time. It is assumed that the crack speed is less than the smaller of the shear wave velocities of two media. An integral transform method and factorization technique are used to solve the problem. The solutions are worked out for semi-infinite crack and finite crack problems. The dynamic stress intensity factors at the crack tip of the moving interface crack are given and it is found that the stress intensity factor of the interface crack is slightly higher than that in the homogeneous medium with slower shear wave velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号