首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
The comparative toxicity of total residual chlorine (TRC) and chlorine dioxide (ClO2) was evaluated by conducting 96 h flow-through bioassays with three types of fish. The fish were subjected to an intermittent exposure regime in which biocide residuals were present for approx. 2-h periods beginning at 0, 24, 48 and 72 h into the tests. These conditions simulated the antifouling procedure (1 h day−1 biocide addition) used to control biofouling of nuclear reactor heat exchangers at the Savannah River Plant near Aiken, South Carolina. LC50 values showed that ClO2 was approx. 2–4 times more toxic than TRC to: (1) juvenile and 1-year-old fathead minnows (Pimphales promelas); and (2) young-of-the-year bluegill (Lepomis macrochirus).The TRC mean 96-h LC50 values were: 0.08 mg l−1 for juvenile fathead minnows, 0.35 mg l−1 for adult fathead minnows and 0.44 mg l−1 for young-of-the-year bluegills. The ClO2 mean LC50 values were: 0.02 mg l−1 for juvenile fathead minnows, 0.17 mg l−1 for adult fathead minnows and 0.15 mg l−1 for young-of-the-year bluegills.  相似文献   

2.
The effects of alpha trinitrotoluene (alpha TNT) and its primary degradation product (TNTcc), commonly referred to as “pink water”, were determined on members of two trophic levels. The growth responses of the algae Selenastrum capricornutum and Microcystis aeruginosa were examined through static bioassays. Death and behavioral responses of the fathead minnow (Pimephales promelas) were determined using a proportional diluter. Alpha TNT and TNTcc were both more toxic to the fathead minnow than to either species of alga. Five and 15 mg l−1 alpha TNT inhibited S. capricornutum and M. aeruginosa growth, respectively. TNTcc inhibited S. capricornutum growth at concentrations above 9 mg l−1; it was lethal to M. aeruginosa at 50 mg l−1, but stimulated growth at lower concentrations. The 96-h lc50 values based on the death response of the fathead minnow to alpha TNT and TNTcc were 2.58 and 1.60 mg l−1, respectively. The 96-h ec50 values based on the behavioral responses were 0.46 and 0.64 mg l−1, respectively. There was no response to concentrations of 0.05 mg l−1 alpha TNT and 0.07 mg l−1 TNTcc.  相似文献   

3.
Before biological treatment, the effluents from one CTMP (chemi-thermomechanical pulping) and three TMP (thermomechanical pulping) mills were acutely lethal to fathead minnows (Pimephales promelas) and the water flea Ceriodaphnia with 48-h LC50 values of 2.2 to > 50%. The effluents also caused chronic effects at concentrations of 0.01–5.3%. After biological treatment, effluents from the three TMP mills were not acutely lethal to either test species. Biotreated effluents from the CTMP mill were also not acutely lethal to minnows but were lethal to Ceriodaphnia (48-h LC50: 54–80%). The chronic effects of biotreated effluents occurred at concentrations of 47 to > 100% for fathead minnows and at 5–37% for Ceriodaphnia. Biological treatment also reduced the levels of BOD (>80%), COD (>60%) and wood extractives (>99%).  相似文献   

4.
Acute toxicity tests were conducted in the laboratory with fathead minnows (Pimephales promelas) to determine the 96-h LC50 of cadmium under three conditions: (1) in laboratory water, (2) in water from experimental ponds, and (3) in pond water underlain by sediment. Cadmium was then applied at doses equivalent to the estimated LC50 values to 0.07-ha ponds containing caged fathead minnows. A cadmium ion selective electrode, ultrafiltration, and equilibrium calculations were used to determine cadmium speciation, and several water quality characteristics were measured to correlate differences in mortality between test systems (laboratory and field) with observed differences in water quality. The LC50 estimates (mg l−1) for the bioassays were 4.39 for the laboratory water, 3.52 for the pond water with sediment, and 2.91 for the pond water. Concentrations of Cd2+ decreased and those of cadmium in the particulate (> 1.2 μm) and 300,000 mol. wt (0.018–1.2 μm) fractions increased over the 96-h; cadmium in these fractions was believed to consist of colloidal sized CdCO3 precipitates. Concentrations of Cd2+ decreased at different rates between test systems, regulated by the degree of CdCO3(s) supersaturation which in turn depended on pH and total metal concentrations. Differences in toxicity in the laboratory tests were attributed to differences in water hardness and Cd2+ concentrations. Mortality of fathead minnows was low (0–10%) during the 96-h test period in the ponds due to the higher pH, which produced supersaturated conditions resulting in the rapid formation of nontoxic CdCO3 precipitates and a more rapid decrease in Cd2+ concentrations as compared to the laboratory bioassays.  相似文献   

5.
Amphipods, Gammarus pseudolimnaeus Bousfield and fathead minnows, Pimephales promelas Rafinesque, were submitted to acute (96-h) and chronic (generation-cycle) bioassays with sodium nitrilotriacetic acid (NTA). All measurements are reported as Na3NTA. The average 96-h TL50 values under flow-through conditions were 98 mg 1−1NTA for the amphipod and 114 mg 1−1 for the fathead minnow. The acute toxicity of NTA was caused in part by the high pH resulting from the addition of large amounts of NTA (> 100 mg 1−1) to soft water. Controlling pH reduced the lethality of NTA by at least one-half to fathead minnow larvae. The chronic no-effect level of NTA to the amphipods was 19 mg 1−1; in fathead minnows, it exceeded the highest exposure level (> 54 mg 1−1).  相似文献   

6.
Aquatic animal toxicity is a major criterion used by the U.S. EPA to designate and classify hazardous substances other than oil. This research developed basic toxicity data for twelve industrial chemicals with which little or no previous testing had been done. Static 96h toxicity tests were performed with one freshwater species (fathead minnow, Pimephales promelas) and one saltwater species (grass shrimp, Palaemonetes pugio or white shrimp, Penaeus setiferus) on the following chemicals: ammonium fluoride, arsenic trisulfide, benzoyl chloride, benzyl chloride, cupric acetate, o-dichlorobenzene, p-dichlorobenzene, mercuric acetate, mercuric thiocyanate, resorcinol, sodium hypochlorite and toluene-2,4-diisocyanate (TDI). As defined by 96 h LC50's ≤ 500 mg l−1, all 12 chemicals were hazardous to freshwater minnows, and all but TDI were hazardous to saltwater shrimp. The physicochemical behaviors of the compounds greatly influenced their aquatic toxicities.  相似文献   

7.
《Water research》1986,20(7):939-941
The purpose of this study was to determine the static acute toxicity of aniline, p-chloro-m-cresol and 2(2,4,5-trichlorophenoxy) propionic acid (silvex) to daphnids (Daphnia magna) and bis(2-chloroethoxy)methane and 2-sec-butyl-4,6-dinitrophenol (dinoseb) to both daphnids and fathead minnows (Pimephales promelas). These data were needed to fulfill requirements established in the NPDES Permit (National Pollutant Discharge Elimination System) issued to the Michigan Division of The Dow Chemical Co. (Midland, Mich., U.S.A.) by the State of Michigan. Where appropriate, water quality-based effluent limitations could be recommended based on the acute toxicity data generated during this study. The results of the acute toxicity tests indicated that bis(2-chloroethoxy)methane was practically non-toxic to both daphnids and fathead minnows (LC50 values of 201 and 184 mg l−1, respectively); additionally, silvex was also found to be practically non-toxic to daphnids (LC50 value > 140 mg l−1). Aniline was highly toxic and p-chloro-m-cresol moderately toxic to daphnids, with calculated LC50 values of 0.17 and 2.0 mg l−1, respectively. Dinoseb was highly toxic both to daphnids and fathead minnows, with reported LC50 values of 0.24 and 0.17 mg l−1, respectively.  相似文献   

8.
The 96 h median lethal concentration (LC50) of total dissolved copper varied from 20 μg 1−1 in soft acid water to 520 μg l−1 in hard alkaline water, in tests with hardness ranging from 30 to 360 mg l−1 as CaCO3 and pH from 5 to 9. The 3-dimensional response surface was complex, although an increase in hardness usually made copper less toxic. A good prediction of copper LC50 at usual combinations of hardness and pH was given by the equation: LC50 = antilog (1.933 + 0.0592 PT + 0.4912 HT + 0.4035 PTHT + 0.4813 P2T + 0.1403 H2TThe transformed variables are and A somewhat less accurate equation is provided for extreme combinations of hardness and pH.Trout of 10 g weight were 2.5 times more resistant than 0.7 g trout. Effect of size was apparently the same at different combinations of hardness and pH, and was predictable by an equation of the form LC50 = Constant × Weight 0.348.Ionic copper (Cu2+) and two ionized hydroxides (CuOH+ and Cu2OH2+2) seemed to be the toxic species of copper, since they yielded the smoothest response surface with the best fit to measured LC50's. The sum of these ions produced LC50's ranging from 0.09 μg l−1 copper in soft alkaline water to 230 μg l−1 in hard acid water. The ions were different in relative toxicity, or became more toxic at high pH, or both.  相似文献   

9.
The effects of vanadium (25–595 mg l−1) and of copper (0.03–4.78 mg l−1) on embryonic survival and hatching of eyed eggs of rainbow trout, Salmo gairdneri, were investigated. Copper was approx. 300-fold more toxic than vanadium (96-h LC50 = 0.4 and 118 mg l−1, respectively) but had little effect on the timing of hatch. Vanadium induced premature hatching of eyed eggs at concentrations from 44 to 595 mg l−1. Concentrations of copper required to produce lethality in eyed eggs were similar to concentrations required to produce mortality in juveniles. Vanadium concentrations approx. 15 times higher were required to produce mortality in eyed eggs than in juveniles. Therefore, acute exposure of eyed rainbow trout eggs to vanadium is not a sensitive toxicity test for use in establishing water quality criteria or maximum acceptable toxicant concentrations.  相似文献   

10.
Preliminary testing of eight collectors (xanthates) and four frothers in 96-h static and 28-day flow-through bioassays using rainbow trout as the test organism show a great disparity in the toxicity of the chemicals administered in these two ways.For the short-term tests, the relative toxicity of the compounds is expressed as an lc50 or as a range of concentration in mg l−1 in which the lc50 is expected to fall. Of the collectors tested in this way sodium ethyl and potassium amyl xanthate were the most toxic, with lc50's in the range of 30–50 mg l−1. Among the frothers, xylenol (cresylic acid) was found to be the most toxic (5.6 mg l−1 >lc50 > 3.2 mg l−1) while polypropylene glycol was least toxic (lc50 > 1000 mg l−1).The long-term tests using potassium ethyl, sodium isopropyl, sodium ethyl, and potassium amyl xanthate indicated that in the flow-through system, the toxicity of the chemicals was in the order of 100 fold greater compared with the static bioassay results.  相似文献   

11.
The observable toxic effects produced by short-term exposure of fathead minnows (Pimephales promelas) to 2,4-dichlorophenol were reduced when the pH of the test water was increased by the addition of NaOH. After exposure for 192 h to 7.43 mg 2,4-dichlorophenol l-1, the average survival of fathead minnows ranged from 28% at pH 7.57 to 100% at pH 9.08. Normal schooling behaviour was completely disrupted, and the equilibrium of most fish was affected after a 24-h exposure to 7.43 mg 2,4-dichlorophenol 1-1 at pH 7.57, but neither schooling nor equilibrium were affected even after 192 h at pH 8.68 and 9.08. Schooling and swimming behaviour of fathead minnows exposed to 12.33 mg 2,4-dichlorophenol l-1 were affected at all pH levels. Survival of these fish after 24 h ranged from 0% at pH 7.84–46% at pH 8.81. Sodium chloride in concentrations ranging from 0 to 13.9 mg l-1 had no observable effects on the acute toxicity of 2,4-dichlorophenol to fathead minnows.  相似文献   

12.
Acute and chronic toxicity tests conducted with the fathead minnow and copper used as the source of dilution water a natural stream to which a sewage treatment plant upstream contributed a variety of materials known to affect acute copper toxicity. Nominal total copper 96-h median tolerance limit values (96-h TL50), determined with static testing procedures, ranged from 1.6 to 21 mg l−1. Dissolved copper 96-h TL50 values ranged from 0.60 to 0.98 mg l−1. The maximum acceptable toxicant concentration (MATC) based on survival, growth, reproduction, and hatchability of eggs was between 0.066 and 0.118 mg l−1.  相似文献   

13.
D.A. Benoit 《Water research》1976,10(6):497-500
Exposing brook trout to various concentrations of chromium [Cr(VI)] for up to 22 months (including reproduction) significantly increased alevin mortality at 0.35 mg Cr l−1 and retarded growth of young brook trout at the lowest concentration tested (0.01 mg Cr l−1). Eight month exposures of rainbow trout significantly increased alevin mortality at 0.34 mg Cr l−1 and also retarded growth at the lowest concentration tested (0.10 mg Cr l−1). Exposures of brook trout lasting 22 months showed, however, that growth was only temporarily affected, and therefore, it was not used as an end point to measure the affects of chromium on either species. Reproduction, and embryo hatchability of brook trout were unaffected at Cr(VI) concentrations that affected survival of newly hatched alevins. The maximum acceptable toxicant concentration (MATC) for brook and rainbow trout exposed to Cr(VI) in water with a hardness of 45 mg l−1 (as CaCO3) and a pH range of 7–8 lies between 0.20 and 0.35 mg Cr l−1. The 96-h lc50 for brook and rainbow trout was 59 and 69 mg Cr l−1, respectively: therefore, the application factor (MATC/96-h lc50) for both species lies between 0.003 and 0.006.  相似文献   

14.
Lead was found to be highly toxic to rainbow trout in both hard water (hardness 353 mg l−1 as CaCO3) and soft water (hardness 28 mg l−1. Analytical results differ greatly with methods of analysis when measuring concentrations of lead in the two types of water. This is exemplified in LC50's and maximum acceptable toxicant concentrations (MATC's) obtained when reported as dissolved lead vs total lead added in hard water. Two static bioassays in hard water gave 96-h LC50's of 1.32 and 1.47 mg l−1 dissolved lead vs total lead LC50's of 542 and 471 mg l−1, respectively. In a flow-through bioassay in soft water a 96-h LC50 of 1.17 mg l−1, expressed as either dissolved or total lead, was obtained. From chronic bioassays, MATC's of lead for rainbow trout in hard water were between 18.2 and 31.7 μg l−1 dissolved lead vs 120–360 μg l−1 total lead. In soft water, where exposure to lead was initiated at the eyed egg stage of development, the MATC was between 4.1 and 7.6 μg l−1. With exposure to lead beginning after hatching and swim-up of fry, the MATC was between 7.2 and 14.6 μg l−1. Therefore, fish were more sensitive to the effects of lead when exposed as eggs.  相似文献   

15.
Acute bioassay tests of hydrogen sulfide were run on Assellus militaris Hay, Crangonyx richmondensis laurentianus Bousfield. Gammarus pseudolimnacus Bousfield. Bactis vagans McDonough. Ephemera simulans Walker and Hexagenia limbata (Serville). Size and type of test chamber, type of substrate for barrowing forms or those seeking shelter in gravel, oxygen concentration, pH, and season of collection influenced the sensitivity of organisms. Hydrogen sulfide exposure at sublethal levels reduced feeding activity of Gammarus. Data indicate that test conditions should approximate natural habitat conditions as closely as practical. The most acceptable 96-h LC50 hydrogen sulfide concentrations for the various species are: Assellus 1.07 mg 1−1Crangonyx 0.84 mg 1−1. Gammarus 0.059 mg 1−1. Baetis 0.020 mg 1−1. Ephemera 0.316 mg 1−1, and Hexagenia, 0.111 mg 1−1. Chronic exposure tests now in progress suggest that the no-effect levels are 8–12 per cent of the 96-h LC50.  相似文献   

16.
The acute toxicity and behavioral response to chlorinated and heated sea-water was determined for coho salmon smolts and 1–3 month old shiner perch. LC50's were determined for 7.5, 15, 30 and 60 min exposure times; 13, 16 and 20°C (Δt = 0, 3, 7°C) temperatures and total residual oxidant (TRO) concentrations ranging from 0.077 to 1.035 mg l−1. The mean 60 min LC50 for shiner perch was significantly reduced (P ≤ 0.05) from 308 μg l−1 TRO at 13°C to 230 μg l−1 TRO at 20°C. The 60 min LC50 for coho salmon decreased from 208 μg l−1 TRO at 13°C to 130 μg l−1 at 20°C. The LC50's for coho salmon in chlorinated sea-water averaged 55% of those for shiner perch. The relationship between TRO concentration, exposure time, and percent survival in chlorinated sea-water at 13°C is presented for both species.A significant (P ≤ 0.01) avoidance threshold for coho salmon occurred at 2 μg l−1 TRO and was reinforced with increasing temperature. A significant (P ≤ 0.01) avoidance threshold for shiner perch occurred at 175 μg l−1 TRO, while a significant preference (P ≤ 0.05 or 0.01) response at 16°C and 20°C occurred at 10, 25, 50 and 100 μg l−1 TRO. The ecological implications of the toxicity tests and the behavioral responses are discussed.  相似文献   

17.
The 96-h LC50 of vanadium to adult American flagfish (Jordanella floridae) was 11.2 mg l−1 in very hard water. Larvae showed 28-day LC50's of 1.13 and 1.88 mg l−1 of vanadium with larger larvae being more resistant. These appeared to be thresholds of lethality. During continuous exposure for 96 days, larval growth and survival were the most sensitive indicators of vanadium toxicity and were marginally reduced at 0.17 mg l−1. At 0.041 mg l−1, there were no deleterious sublethal effects but there was definite stimulation of growth in females and of reproductive performance. The threshold for chronic toxicity was judged to be about 0.08 mg l−1. The “safe”-to-lethal ratio was 0.007 and this could be used as an application factor for other species. There was no clear evidence that vanadium had any long-term cumulative toxicity.  相似文献   

18.
Adult white perch (Morone americana), acclimated to 15°C, were exposed to a series of ozone-produced oxidant (OPO) concentrations for 96 h using continuous flow bioassay techniques. Toxicity data were analyzed using both response surface modeling and standard probit regression. White perch were also exposed to a series of near and sublethal OPO concentrations, selected from the acute toxicity study, for 96 h and then placed in clean non-ozonated water for 14 days. Blood pH, hematocrit and gill histopathology were analyzed during exposure at 24, 48 and 96 h and after 4 and 14 days in the recovery period. Blood pH and hematocrit levels were analyzed statistically using standard ANOVA and multiple range tests. Histopathological effects were examined using both light microscopy and scanning electron microscopy. The 24-, 48- and 96-h LC30's were 0.38, 0.26 and 0.20 mg OPO l−1, respectively. Blood pH was significantly reduced at concentrations 0.15 mg OPO l−1 but not at 0.10 mg l−1 or lower concentrations. Hematocrit significantly increased at concentrations 0.10 mg OPO l−1. Histopathological examination revealed minimal effects on gill tissue at 0.01 mg OPO l−1, moderate epithelial sloughing and heavy mucus production at 0.05 mg OPO l−1 and extreme tissue damage at concentrations 0.10 mg l−1. Results from both the acute toxicity and the exposure and recovery study were compared with the effects of chlorine-produced oxidants (CPO) obtained from the literature. Both OPO and CPO appear to have similar effects on adult white perch.  相似文献   

19.
The mean 96-h LC50's of silver with rainbow trout were 6.5 μg l−1 and 13.0 μg l−1 in soft water (approximately 26 mg l−1 hardness as CaCO3) and hard water (350 mg l−1 hardness as CaCO3), respectively. The long-term, “no effect” concentration for silver, added to the water as silver nitrate, was between 0.09 and 0.17 μg l−1 after 18 months exposure in soft water. The “no effect” concentration is that concentration range which defines no observed effect. Based on mortalities different from the control, no mortalities attributable to silver occurred at 0.09 μg Ag l−1, whereas 17.2% mortality occurred to fish exposed to 0.17 μg ll−1. The “no effect” concentration does not reflect possible effects of silver on spawning behavior or reproduction, since female rainbow trout will not generally reach sexual maturity before 3 yr. At silver concentrations of 0.17 μg l−1 or greater, silver caused premature hatching of eggs and reduced growth rate in fry. In one experiment, the eggs were completely hatched within 10 days of exposure; whereas, control eggs completed hatching after 42 days. The prematurely erupted fry were not well developed and frequently died. The growth rate of surviving fry was greatly reduced.  相似文献   

20.
Lethal response of Atlantic salmon parr, as 96-h LC50, is semi-logarithmically related to the number of moles of ethylene oxide in the polyoxyethylated surfactant. 96-h LC50 of polyoxyethylene (10) monolaurate = 7.5 mg l1, polyoxyethylene (10) lauryl ether = 3·5 mg l−1, and polyoxyethylene (10) octadecyl amine = 0·2 mg l−1.Evidence is presented which suggests that polyoxyethylene esters with up to 18–20 moles of ethylene oxide are partially detoxified in the animal, resulting in changes in lethal response. Possible physiological explanations for the relationship between polyoxyethylene chain length and lethality involve uptake rates and attainment of a critical concentration of surfactant at the unknown active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号