首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blending poly(ethylene glycol) (PEG) with poly(lactide) (PLA) decreases the Tg and improves the mechanical properties. The blends have lower modulus and increased fracture strain compared to PLA. However, the blends become increasingly rigid over time at ambient conditions. Previously, it was demonstrated that a PLA of lower stereoregularity was miscible with up to 30 wt% PEG. Aging was due to slow crystallization of PEG from the homogeneous amorphous blend. Crystallization of PEG depleted the amorphous phase of PEG and gradually increased the Tg until aging essentially ceased when Tg of the amorphous phase reached the aging temperature. In the present study, this aging mechanism was tested with a crystallizable PLA of higher stereoregularity. Changes in thermal transitions, solid state structure, and mechanical properties were examined over time. Blends with up to 20 wt% PEG were miscible. Blends with 30 wt% PEG could be quenched from the melt to the homogenous amorphous glass. However, this composition phase separated at ambient temperature with little or no crystallization. Changes in mechanical properties during phase separation reflected increasing rigidity of the continuous PLA-rich phase as it became richer in PLA. Construction of a phase diagram for blends of higher stereoregular PLA with PEG was attempted.  相似文献   

2.
Li2ZnTi3O8 ceramics doped with ZnO–La2O3–B2O3 glass were prepared by the conventional solid-state ceramic route. The effects of the ZnO–La2O3–B2O3 glass on the sintering temperature, phase composition, microstructure and microwave dielectric properties of Li2ZnTi3O8 ceramics were investigated. The addition of ZLB glass can reduce the sintering temperature of Li2ZnTi3O8 ceramic from 1075 °C to 925 °C without obvious degradation of the microwave dielectric properties. Only a single phase Li2ZnTi3O8 with cubic spinel structure is formed in Li2ZnTi3O8 ceramic with ZLB addition sintered at 925 °C. Typically, 1.0 wt% ZLB-doped Li2ZnTi3O8 ceramic sintered at 925 °C can reach a maximum relative density of 95.8% and exhibits good microwave dielectric properties of εr=24.34, Q×f=41,360 GHz and τf=−13.4 ppm/°C. Moreover, this material is compatible with Ag electrode, which makes it a promising candidate for LTCC application.  相似文献   

3.
In this research, the synthesis of nanocrystalline merwinite (2SiO2-3CaO-MgO) bioactive ceramic was carried out by the sol-gel method. After crushing, obtained sol-gel derived bioceramic powder pressed uniaxially to produce cylindrical-like pellets, followed by sintering at 1300 °C. Via immersion in simulated body fluid (SBF) for various time intervals, the formation of apatite was characterized. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FT-IR) studies were conducted both before and after immersion in SBF. The crystallization temperature of the merwinite was determined by thermal analysis. Attained results confirmed formation of apatite layer within the first day of soaking. Accordingly it can be concluded that merwinite is bioactive and might be used for preparation of implantable biomaterials.  相似文献   

4.
A glass/ceramic composite using lead-free low melting glass (SiO2B2O3CaOMgO glass) with Al2O3 fillers was investigated. X-ray diffraction analysis revealed that the anorthite and cordierite phase appeared in the sintered composites. The dilatometric analysis showed that the onset of shrinkage took place at ∼624 °C for all the samples and the onset temperature was independent on the content of glass. The low melting glass significantly promoted densification of the composites and lowered the sintering temperature to ∼875 °C. The addition of 50 wt% glass sintered at 875 °C showed εr of 7.3, tan δ of 1.15×10−3, TEC of 5.41 ppm/°C, thermal conductivity of 3.56 W/m °C, and flexural strength of 184 MPa. The results showed that the SiO2B2O3CaOMgO glass/Al2O3 composites were strong potential candidates for low temperature cofired ceramic substrate applications.  相似文献   

5.
Bioactive calcium titanate/borosilicate glass composites were developed. Powder mixtures of borosilicate glass and 10, 20 or 30 wt% of potassium polytitanate particles were uniaxially pressed and sintered at 850 °C for 1 h. After heat treatment the reaction between potassium polytitanate and borosilicate glass produced composites consisting of calcium titanate particles embedded in a B-rich amorphous phase. For the in vitro bioactivity assessment sintered samples were immersed in a simulated body fluid (SBF) for 21 days under physiological conditions of pH and temperature. The compressive strength of the composites was also evaluated. A homogeneous and thick apatite layer was formed on all the materials tested. Furthermore, an appropriate compressive strength was observed (68-85 MPa). These results indicate that these composites are potential materials for bone tissue replacement and regeneration.  相似文献   

6.
Spherical shape borate-based bioactive glass powders with fine size were directly prepared by high temperature spray pyrolysis. The powders prepared at temperatures between 1200 and 1400 °C had mixed phase with small amounts of fine crystal and an amorphous rich phase. Glass powders with amorphous phase were prepared at a temperature of 1500 °C. The mean size of the glass powders prepared by spray pyrolysis was 0.76 μm. The glass powders prepared at a temperature of 1200 °C had two distinct exothermic peaks (Tc1 and Tc2) at temperatures of 588 and 695 °C indicating crystallization. The glass transition temperature (Tg) of the powders prepared at a temperature of 1200 °C was 480 °C. Phase-separated crystalline phases with spherical shape were observed from the surface of the pellet sintered at a temperature of 550 °C. Crystallization of the pellet was completely occurred at temperatures of 750 and 800 °C. The pellets sintered at temperatures below 700 °C had single crystalline phase of CaNa3B5O10. The pellet sintered at a temperature of 800 °C had two crystalline phases of CaNa3B5O10 and CaB2O4.  相似文献   

7.
《Ceramics International》2017,43(15):11676-11685
The higher melting temperature and longer soaking time during conventional glass melting route promoted the search for alternative in developing new bioactive glass (BG) composition with improved in fabrication temperature and melting time. The current project involved fabrication of new BG compositions based on SiO2-CaO-Na2O-P2O5 system via melt derived route. It was confirmed that all bioactive glass composition can be melted at temperature lower than 1400 °C. Formation of Si-O-Si (tetrahedral) functional group highlighted that silicate based glass was established as detected by Fourier transform infrared spectroscope (FTIR). BG bioactivity was performed by incubating the BG powder in Tris-buffer solution (pH 8) for 7, 14 and 21 days. In vitro test confirmed the apatite formation on the bioactive glass surface upon soaking in Tris-buffer solution with characteristic of carbonate group (C-O) and P-O band noticed from FTIR and present of crystalline peak observed in X-ray diffraction (XRD). Morphology of apatite formation on BG surface was observed using scanning electron microscope (SEM).  相似文献   

8.
Fluorapatite-containing glass ceramics were synthesized on the basis of the glass-forming system SiO2–Al2O3–P2O5–CaO–CaF2. The introduction of phosphorus and fluorine containing materials, as well as the specific regime of heat treatment of the glasses gave glass ceramic materials with crystalline phases of the apatite group—fluorapatite (Ca10(PO4)6F2), apatite (Ca3(PO4)2), vitlokite (Ca9P6O24), etc. The X-ray phase analysis showed that the main phase in all the glass ceramic samples was fluorapatite. The phase composition, structure and some of the basic properties of the glass ceramic samples were determined.  相似文献   

9.
The present work describes the processing of alumina fiber reinforced alumina ceramic preforms consisting of chopped Al2O3 fibers (33 wt%) and Al2O3 (67 wt%) fine powders by slip casting. The preforms were pre-sintered in air at 1100 °C for 1 h. A lanthanum based glass was infiltrated into these preforms at 1250 °C for 90 min. Linear shrinkage (%) was studied before and after glass infiltration. Pre-sintered and infiltrated specimens were characterized by scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, porosimetry and flexural strength. The alumina preforms showed a narrow pore size distribution with an average pore size of ∼50 nm. It was observed that introducing Al2O3 fibers into Al2O3 particulate matrix produced warp free preforms with minor shrinkage during pre-sintering and glass infiltration. It was observed that the infiltration process fills up the pores and considerably improves the strength and reliability of alumina preform.  相似文献   

10.
Microwave ceramics of Ba4(Nd0.7Sm0.3)9.33Ti18O54 with 0–3 wt% Ag additions were synthesized by a citrate sol–gel method. The BaO–B2O3–SiO2 glass was also added into the sol–gel derived BNST ceramic powders as sintering aids. The undoped, Ag- and BaBS-doped samples can be sintered at 1250 °C, 1150 °C and 1000 °C, respectively. The microstructure and dielectric properties were then controlled by doping Ag or BaBS glass. Near isoaxial grains with about 250 nm and typical columnar grains were obtained for the silver-doped and BaBS-doped samples, respectively. For the <1 wt% silver-doped samples, the dielectric constant and Q × f retained unaltered but τf decreased from 9 ppm/°C to 1.4 ppm/°C. With increasing silver content from 1 wt% to 3 wt%, the dielectric constant and τf significantly increased but Q × f decreased. For the BaBS-doped samples, both dielectric constant and Q × f decreased but τf increased with increasing BaBS content.  相似文献   

11.
Some ceramics have the ability to form direct bonds with surrounding tissues when implanted in the body. Among bioactive ceramics, the apatite/wollastonite (A/W) glass–ceramic, containing apatite and wollastonite crystals in the glassy matrix, has been largely studied because of good bioactivity and used in some fields of medicine, especially in orthopaedics and dentistry. However, medical applications of bioceramics are limited to non-load bearing applications because of their poor mechanical properties. In this study, A/W powders, obtained from industrial and high grade quality raw materials, were thermally sprayed by APS (atmospheric plasma spraying) on Ti–6Al–4V substrates, in order to combine the good bioactivity of the bioceramic and the good mechanical strength of the titanium alloy base material. The microstructure and the resulting properties were evaluated depending on processing parameters and post-processing thermal treatments. The morphology and the microstructure of the coatings were observed by SEM and the phase composition was examined by X-ray diffraction. The bioactivity of the coatings was evaluated by soaking the samples in a simulated body fluid (SBF) for 1, 2 and 5 weeks. The bioactive behaviour was then correlated with the thermal treatments and the presence of impurities (in particular Al2O3) in the coatings.  相似文献   

12.
The sinterability of Bi2O3-doped hydroxyapatite (HA) has been studied and compared with the undoped HA. Varying amounts of Bi2O3 ranging from 0.05 wt% to 1.0 wt% were mixed with the HA. The study revealed that most sintered samples composed of the HA phase except for compacts containing 0.3, 0.5 and 1.0 wt% Bi2O3 and when sintered above 1100 °C, 1000 °C and 950 °C, respectively. In general, the addition of 0.5 wt% Bi2O3 was identified as the optimum amount to promote densification as well as to improve the mechanical properties of sintered HA at low temperature of 1000 °C. Throughout the sintering regime, the highest value of relative bulk density of 98.7% was obtained for 0.5 wt% Bi2O3-doped HA when sintered at 1000 °C. A maximum Young's modulus of 119.2 GPa was measured for 0.1 wt% Bi2O3-doped HA when sintered at 1150 °C. Additionally, the ceramic was able to achieve highest hardness of 6.08 GPa and fracture toughness of 1.21 MPa m1/2 at sintering temperature of 1000 °C.  相似文献   

13.
In the present study, the microstructural evolution and high temperature deformation behaviours of 8 mol% Y2O3 stabilized cubic zirconia (8YCSZ) containing up to 10 wt% SiO2 is investigated. The experimental results show that the SiO2 doped specimens sintered at 1400 °C contain only the cubic crystalline phase and SiO2 has the very limited solubility of 0.3 wt% in cubic zirconia. This suggests that only small part of the SiO2 dissolves in the cubic zirconia and the rest of SiO2 segregates at grain boundaries and multiple junctions as amorphous (glassy) phase. This glassy phase prevents the grain growth by minimizing grain boundary energy and mobility, which results from solute segregation at the grain boundary and its drag. The deformation of the undoped 8YCSZ is characterized by large strain hardening with limited elongation. This is mainly due to severe grain growth during high temperature deformation. The addition of the SiO2 results in a decrease in strain hardening and enhanced tensile elongation. These effects have been further improved with the increase of the SiO2 addition reaching the elongation to failure of 152% for 10 wt% SiO2 doped specimen in tension at a temperature of 1400 °C and strain rate of 1.3 × 10−4 s−1. The decreased strain hardening and increased ductility in the SiO2 doped specimens are due to the segregation of amorphous glassy phase to the grain boundaries, thus hindering grain growth and facilitating grain boundary sliding, which is the primary mechanism of deformation in fine grained materials at high temperatures.  相似文献   

14.
This paper describes the behaviour of bioactive wollastonite materials containing Malaysian limestone and silica sand. Wollastonite, which is also known as calcium silicate (CaSiO3), is an industrial mineral composed of calcium, silicon and oxygen. Pseudowollastonite, which is a primary crystal of wollastonite, was synthesised via a solid-state reaction at a temperature of 1450 °C. The in-vitro bioactivity of wollastonite was examined by soaking it in simulated body fluid (SBF) solution for 1–7 days at 36.5 °C. The soaked wollastonite samples were characterised using XRD, SEM-EDX, FTIR and ICP analyses. Apatite particles precipitated on the surface of the wollastonite sample after the sample was soaked in the SBF. The XRD analysis indicated the presence of an increasing amount of the hydroxyapatite phase as the soaking time increased. The SEM and EDX analyses indicated the formation of granules of agglomerated apatite particles on the surface of the soaked wollastonite sample. During the formation of apatite, phosphate ions from the SBF solution were consumed. This process was confirmed by ICP, which revealed a decrease in ion concentration after the soaking process. The FTIR analysis indicated that the peaks of the phosphate ions increase when the apatite layer forms on the surface of the wollastonite sample. After the soaking process, a calcium deficient hydroxyapatite layer was observed on the wollastonite sample. The study concludes that wollastonite produced from Malaysian limestone and silica sand is bioactive and may be used as an implantable biomaterial.  相似文献   

15.
Phase separation and mechanical responses of polyurethane nanocomposites   总被引:2,自引:0,他引:2  
Nanocomposites of a diamine-cured polyurethane with nanofillers of different kinds, sizes, and surfaces were studied. Atomic force microscopy, scanning electron microscopy, X-ray diffraction, tensile tests, and dynamic mechanical thermal analysis were employed in the experiments. Experimental results suggest that mechanical properties are strongly correlated to polymer phase separation, which depends on the nature of the interface between the polymer and the nanoparticles. Two stages of phase separation were observed: the first stage involves the self-assembly of the hard segments into small hard phases of about 10 nm in width; the second stage involves the assembly of the 10 nm wide hard phases into larger domains of about 40-100 nm in width. In the case of polyurethane/ZnO nanocomposites with 5 wt% (less than 1 vol%) 33 nm ZnO nanoparticles, the covalent bonds that were formed between the polymer and ZnO surface hydroxyl groups constrain both stages of phase separation in polyurethane, resulting in approximately 40% decrease in the Young's modulus, 80% decrease in the strain at fracture, and 11 °C increase in the glass transition temperature of the soft segments. In the case of polyurethane/Al2O3 nanocomposites with 5 wt% 15 nm Al2O3 nanoparticles, hydrogen bonds between the particles and the polymer mainly constrain the second step of the phase separation, resulting in about 30% decrease in the Young's modulus and 12 °C increase in the glass transition temperature, but only a moderate decrease in the strain at fracture. The most striking results come from polyurethane/clay composites, where only van der Waals type interactions exist between polyurethane and the organically modified clay (Cloisite 20A). With the addition of 5 wt% surface modified clay (Cloisite 20A), both the Young's modulus and the strain at fracture decrease more than 80%, but the glass transition temperature increases by about 13 °C. Adding 10 wt% Cloisite 20A into polyurethane almost totally disrupts the phase separation, resulting in a very soft composite that resembles a “viscous liquid” rather than a solid.  相似文献   

16.
(1 − x)Ba0.6Sr0.4TiO3-xMgAl2O4(x = 25, 30, 35 and 40 wt%) composite ceramics were prepared by conventional solid-state reaction method. The microstructures, dielectric properties and tunability of the composites have been investigated. The XRD patterns analysis reveals two crystalline phases, a cubic perovskite structure Ba0.6Sr0.4TiO3 (BST) and a spinel structure MgAl2O4 (MA). SEM observations show that the BST grains slightly dwindle and agglomerate with increasing amounts of MA. A dielectric peak with very strong frequency dispersion is observed at higher MA content, and the Curie temperature shifts to a higher temperature with increasing MA content. The ceramic sample with 30 wt% MA has the optimized properties: the dielectric constant is 1503, the dielectric loss is 0.003 at 10 kHz and 25 °C, the tunability is 23.63% under a dc electric field of 1.0 kV/mm, which is suitable for ferroelectric phase shifter.  相似文献   

17.
Bioactive glass nanoparticles in the system (SiO2-CaO-P2O5-ZnO) were synthesized following the sol-gel technique. The prepared glass nanoparticles of 1, 3 and 5 wt% of ZnO (coded: GZ1, GZ3 and GZ5, respectively) were characterized by TEM, FTIR, XRF, TGA and DSC. All glass powders had particle sizes less than 100 nm. Textural analysis revealed that for GZ1, GZ3 and GZ5, the average pore diameters, measured by the high-speed gas sorption analyzer, were 15.9, 15.4 and 15.2 nm, respectively, while the average pore diameters measured by the mercury intrusion porosimetry were 47, 50 and 63 nm, respectively. All glass powders were highly porous (75, 76 and 75%) with surface areas of 233, 94 and 118 m2/g for GZ1, GZ3 and GZ5, respectively. All glass powders induced an apatite layer on their surfaces upon immersion in simulated body fluid (SBF) as verified by SEM and TF-XRD.  相似文献   

18.
Many different types of glass and ceramic wasteforms have been investigated for nuclear waste immobilization. This study deals with synthesizing composite wasteforms based on a parent glass belonging to the SiO2–PbO–CaO–ZrO2–TiO2–(B2O3–K2O) system with the use of zircon as a second component. The fabrication involves powder mixing, pressing and pressureless sintering. The processing conditions were investigated so as to achieve the highest density and the best sintering temperature for different amounts of zircon, i.e. 5, 10 and 15 wt%. The sintered products were studied by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM); as well as ICP-MAS for leaching experiments. The most promising composite containing zirkelite and titanite crystals in a lead-rich glassy matrix was obtained at 700 °C for 10 wt% zircon.  相似文献   

19.
Fully densified SiC ceramics were developed from commercially available β-SiC powders using small amount (3 wt%) of AlN-Sc2O3 or AlN-Y2O3 additives by hot pressing at 2050 °C for 6 h in nitrogen atmosphere, and their wear properties were investigated by subjecting to self-mated sliding at different loads (1, 6 and 13 N) under unlubricated conditions. SiC ceramics prepared with 3 wt% AlN-Y2O3 additives consisted of mostly large equi-axed grains with amorphous grain boundary phase of ∼1.2 nm thickness, whereas SiC ceramics sintered with 3 wt% AlN-Sc2O3 additives showed duplex microstructure of elongated and fine equi-axed grains with clean grain boundary. As the load was increased, the steady state coefficient of friction reduced from ∼0.6 to ∼0.2, and wear rate increased from 10−6 to 10−5 mm3/N·m. It was observed that the friction did not depend on the additive composition, while less wear was observed for the SiC ceramics sintered with 3 wt% AlN-Sc2O3 additives consisting of clean grain boundary. The material loss was increased with the increased amount of sintering additive to 10 wt%. The worn surface morphology revealed that the material was primarily removed via surface grooving and microcracking at 1 N load, while tribochemical wear dominated at 6 and 13 N loads.  相似文献   

20.
Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with SrO–B2O3–SiO2 glass additives were prepared via the solid state reaction route. The effects of glass contents on the sintering behavior, dielectric properties, microstructures, and energy storage properties of BSZT ceramics were investigated. Dielectric breakdown strength of 22.4 kV/mm was achieved for BSZT ceramics with 20 wt% glass addition. Dielectric relaxation behavior was observed in dielectric loss versus temperature plots. In order to investigate the mechanism of dielectric breakdown performance, the relationship between dielectric breakdown strength and grain boundary barrier was studied by the measurements of breakdown strength and activation energy. A discharged energy density of 0.45 J/cm3 with an energy efficiency of 88.2% was achieved for BSZT ceramics with 5 wt% glass addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号