首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
Abstract

In the current study, a predictive model on tool flank wear rate during ultrasonic vibration-assisted milling is proposed. One benefit of ultrasonic vibration is the frequent separation between tool and workpiece as the cutting time is reduced. In order to account for this effect, three types of tool–workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool center under feed movement and vibration. If the tool is moving away from workpiece, there is no contact. Type II criterion examines the position of tool center. If the tool center is far from the uncut workpiece surface, there is no contact even though the tool is getting closer. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If any criterion is satisfied, the tool flank wear rate is zero. Otherwise, the flank wear rate is predicted considering abrasion, adhesion and diffusion. The proposed predictive tool flank wear rate model is validated through comparison to experimental measurements on SKD 61 steel with uncoated carbide tool. The proposed predictive model is able to match the measured tool flank wear rate with high accuracy of 10.9% average percentage error. In addition, based on the sensitivity analysis, smaller axial depth of milling, larger feed per tooth or higher cutting speed will result in higher flank wear rate. And the effect of vibration parameters is less significant.  相似文献   

2.
A slip-line field model for orthogonal cutting with chip breaker and flank wear has been developed. For a worn tool, this slip-line field includes a primary deformation zone with finite thickness; two secondary shear zones, one along the rake face and the other along the flank face; a predeformation zone; a curled chip; and a flank force system. It is shown that the cutting geometry is completely determined by specifying the rake angle, tool-chip interface friction and the chip breaker constraint. The chip radius of curvature, chip thickness, and the stresses and velocities within the plastic region are readily computed. Grid deformation patterns, calculated with the velocity field determined, demonstrate that the predicted effects of changes in frictional conditions at the tool-chip interface and of the rake angle on chip formation are in accord with experimental observations. The calculated normal stress distribution at the tool-chip interface is in general agreement with previously reported experimental measurements. The model proposed predicts a linear relationship between flank wear and cutting force components. The results also show that non-zero strains occur at and below the machined surface when machining with a worn tool. Severity and depth of deformation below the machined surface increases with increasing flank wear. Forces acting on the chip breaker surface are found to be small and suggest that chip control for automated machining may be feasible with other means.  相似文献   

3.
This paper reports an experimental study of flank wear on TiN- and TiAlN-coated carbide tools in the turning of AISI 1045, AISI 4135, ductile cast iron, and Inconel 718, and it was conducted with the purpose of showing the relationship between the change in wear rate and the loss of coating layer on the cutting edge. It was found that the relation between cutting distance and flank wear in log-log scale clearly shows the change in wear rate, thus providing a straightforward way to determine the relation between worn out coating layer and increase in wear rate. This relation was confirmed by analyzing the presence of coating layer before and after the inflection point appears by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) photographs. It was observed that the coating layer on the flank face is worn away and finally is worn out. However, even if the layer on the flank face is worn out, tool wear is suppressed as long as the coating layer on the cutting edge exists. On the other hand, when the coating layer on the cutting edge is worn out, the wear resistance of the tool depends on the substrate; thus, the wear rate increases. According to the results, as the cutting speed increases, the change in wear rate appears in a shorter cutting distance, making flank wear to be high. High pressure and high temperature act on the rake face; thus, thermal stability of the coating layer in the cutting edge is important. A low cutting speed decreases cutting efficiency, but a high cutting speed causes flank wear to be high; therefore, in order to optimize machining cost, an acceptable cutting speed, from the standpoint of tool wear, should be selected.  相似文献   

4.
Tool flank wear has significant effects on the cutting process, as it affects cutting forces, temperature and residual stresses. In this article, analytical models are developed to predict the cutting temperature and residual stresses in the orthogonal machining of a worn tool. In these models, measured forces, cutting conditions, tool geometry, and material properties are used as inputs. Stresses resulting from thermal stresses, fresh tool stresses and stresses due to tool flank wear are used in this analytical elasto-plastic model, and the residual stresses are determined by a relaxation procedure. The analytical model is verified experimentally with X-ray diffraction measurements. With the analytical model presented here, accurate residual stress profiles in worn tools are shown, while the computational time is significantly reduced from days, typical for finite-element method (FEM) models, to seconds.  相似文献   

5.
Flank and crater wear are the primary tool wear patterns during the progressive tool wear in metal cutting. Cutting forces may increase or decrease, depending on the combined contribution from the flank and/or crater wear. A two-dimensional (2D) slip-line field based analytical model has been proposed to model the force contributions from both the flank and crater wear. To validate the proposed force model, the Bayesian linear regression is implemented with credible intervals to evaluate the force model performance in orthogonal cutting of CK45 steels. In this study, the proposed analytical worn tool force model-based predictions fall well within the 75% credible intervals determined by the Bayesian approach, implying a satisfactory modeling capability of the proposed model. Based on the parametric study using the proposed force model, it is found that cutting forces decrease with the increasing crater wear depth but increase with the increasing flank wear length. Also, the predicted cutting forces are affected noticeably by the friction coefficients along the rake and flank faces and the ratio of crater sticking region to sliding region, and better knowledge of such friction coefficients and ratio is expected to further improve worn tool force modeling accuracy. Compared with the finite element approach, the proposed analytical approach is efficient and easy to extend to three-dimensional worn tool cutting configurations.  相似文献   

6.
Tool crater wear depth modeling in CBN hard turning   总被引:1,自引:0,他引:1  
Yong Huang  Ty G. Dawson 《Wear》2005,258(9):1455-1461
Hard turning has been receiving increased attention because it offers many possible benefits over grinding in machining hardened steel. The wear of cubic boron nitride (CBN) tools, which are commonly used in hard turning, is an important issue that needs to be better understood. For hard turning to be a viable replacement technology, the high cost of CBN cutting tools and the cost of down-time for tool changing must be minimized. In addition to progressive flank wear, microchipping and tool breakage (which lead to early tool failure) are prone to occur under aggressive machining conditions due to significant crater wear and weakening of the cutting edge. The objective of this study is to model the CBN tool crater wear depth (KT) to guide the design of CBN tool geometry and to optimize cutting parameters in finish hard turning. First, the main wear mechanisms (abrasion, adhesion, and diffusion) in hard turning are discussed and the associated wear volume loss models are developed as functions of cutting temperature, stress, and other process information. Then, the crater wear depth is predicted in terms of tool/work material properties and process information. Finally, the proposed model is experimentally validated in finish turning of hardened 52100 bearing steel using a low CBN content tool. The comparison between model predictions and experimental results shows reasonable agreement, and the results suggest that adhesion is the dominant wear mechanism within the range of conditions that were investigated.  相似文献   

7.
2D FEM estimate of tool wear in turning operation   总被引:2,自引:0,他引:2  
L.-J. Xie  J. Schmidt 《Wear》2005,258(10):1479-1490
Finite element method (FEM) is a powerful tool to predict cutting process variables, which are difficult to obtain with experimental methods. In this paper, modelling techniques on continuous chip formation by using the commercial FEM code ABAQUS are discussed. A combination of three chip formation analysis steps including initial chip formation, chip growth and steady-state chip formation, is used to simulate the continuous chip formation process. Steady chip shape, cutting force, and heat flux at tool/chip and tool/work interface are obtained. Further, after introducing a heat transfer analysis, temperature distribution in the cutting insert at steady state is obtained. In this way, cutting process variables e.g. contact pressure (normal stress) at tool/chip and tool/work interface, relative sliding velocity and cutting temperature distribution at steady state are predicted. Many researches show that tool wear rate is dependent on these cutting process variables and their relationship is described by some wear rate models. Through implementing a Python-based tool wear estimate program, which launches chip formation analysis, reads predicted cutting process variables, calculates tool wear based on wear rate model and then updates tool geometry, tool wear progress in turning operation is estimated. In addition, the predicted crater wear and flank wear are verified with experimental results.  相似文献   

8.
In this study, a new slip-line field model and its associated hodograph for orthogonal cutting with a rounded-edge worn cutting tool are developed using Dewhurst and Collins's matrix technique. The new model considers the existence of dead metal zone in front of the rounded-edge worn cutting tool. The ploughing force and friction force occurred due to flank wear land, chip up-curl radius, chip thickness, primary shear zone thickness and length of bottom side of the dead metal zone are obtained by solving the model depending on the experimental resultant force data. The effects of flank wear rate, cutting edge radius, uncut chip thickness, cutting speed and rake angle on these outputs are specified.  相似文献   

9.
A. E. Bayoumi  S. Barnwal  D. V. Hutton 《Wear》1993,170(2):255-266
On-line knowledge of tool engagement and flank wear is critical for successful adaptive control of a machining operation. A method combining a mechanistic model and empirical relationships has been developed for helical end milling operations. Computation of cutting tool engagements and flank wear width occurs in real time as the cutting progresses using averaged force data. Response surface methodology has been used to investigate the effects of the process and operating variables on the process-dependent parameters; a second order relationship was obtained. The approach can also determine variation of wear land width along the length of the tool as axial engagement changes.  相似文献   

10.
Tool wear monitoring in drilling using force signals   总被引:3,自引:0,他引:3  
S. C. Lin  C. J. Ting 《Wear》1995,180(1-2):53-60
Utilization of force signals to achieve on-line drill wear monitoring is presented in this paper. A series of experiments were conducted to study the effects of tool wear as well as other cutting parameters on the cutting force signals and to establish the relationship between force signals and tool wear as well as other cutting parameters when drilling copper alloy. These experiments involve four independent variables; spindle rotational speed ranging from 600 to 2400 rev min−1, feed rate ranging from 60 to 200 mm min−1, drill diameter ranging from 5 to 10 mm, and average flank wear ranging from 0.1 to 0.9 mm. A statistical analysis provided good correlation between average thrust and drill flank wear. The relationship between cutting force signals and cutting parameters as well as tool wear is then established. The relationship can then be used for on-line drill flank wear monitoring. Feasibility studies show that the use of force signal for on-line drill flank wear monitoring is feasible.  相似文献   

11.
We have proposed cutting tools with various textured surfaces to increase cutting tool life. Our previous studies have developed cutting tools having periodical stripe-grooved surfaces on their rake face formed using femtosecond laser technology, which displayed high crater wear resistance in cutting of steel materials. In this study, the mechanism for suppressing the crater wear on the tool surface and the relationship between texture dimensions and wear resistance were investigated to provide a guideline for developing tools with textured surfaces. Furthermore, we newly introduced the textured surfaces into a flank face of cutting tools to improve flank wear resistance. Face milling experiments on steel materials exhibited that the newly developed tool having the textured flank face significantly reduced the flank wear. Moreover, the influences of texture dimensions and cutting conditions on the flank wear resistance were also discussed.  相似文献   

12.
Micro-texture at the tool face is a state-of-the-art technique to improve cutting performance. In this paper, five types of micro-texture were fabricated at the flank face to improve the cooling performance under the condition of high pressure jet coolant assistance. By using micro-textures consisted of pin fins, plate fins and pits fabricated 0.3 mm away from the cutting edge, heat transfer from the tool face to coolant was enhanced. The conditions of tool wear, adhesion and chip formation were compared between the micro-textured and non-patterned tools in the longitudinal turning of the nickel-based superalloy Inconel 718. As a result, micro-textured tools always exhibited the reduced flank and crater wear compared with the non-patterned tool, and the rate of tool wear was influenced by the array and height of fin. The energy dispersive spectroscopy analysis of worn flank faces and the electromotive forces obtained from the tool-work thermocouple supported better cooling performances of micro-textured tools. In addition, coolant deposition at flank face evidenced that heat transfer could be promoted by micro-texture near the border of the contact area between the flank wear land and machined surface. Finally, the changes of flow patterns with pit depth are analyzed for pit type tools by computational fluid dynamics. This investigation clearly showed the function of micro-textures for increasing the turbulent kinetic energy and cooling the textured tool face.  相似文献   

13.
张昌娟  焦锋  赵波  牛赢 《光学精密工程》2016,24(6):1413-1423
基于激光加热辅助切削和超声椭圆振动切削提出了激光超声复合切削加工工艺。采用聚晶立方氮化硼(PCBN)刀具对YG10硬质合金进行了常规切削,超声椭圆振动切削,激光加热辅助切削和激光超声复合切削对比试验。检测了刀具磨损量、刀具磨损形貌、工件表面粗糙度以及工件表面形貌,并通过扫描电镜(SEM)对刀具磨损区域进行了能谱分析,同时研究了激光超声复合切削硬质合金时PCBN刀具的磨损及其对工件表面质量的影响。最后,与常规切削、超声振动切削及激光加热辅助切削进行了对比试验。结果表明:激光超声复合切削时刀具使用寿命显著增加,加工后的工件表面粗糙度平均值分别降低了79%、60%和64%,且工件表面更加平整光滑。激光超声复合切削硬质合金时,PCBN刀具的前刀面磨损表现为平滑且均匀的月牙洼磨损,后刀面磨损表现为较窄的三角形磨损带和较浅的凹坑和划痕;刀具的失效机理主要为黏接磨损、氧化磨损和磨粒磨损的综合作用。  相似文献   

14.
Although literature on the measurement of flank wear and crater wear in single-point turning tools using machine vision is well documented, the study on the effect of nose radius wear on the roughness profile and dimensional changes of workpiece is less explored. The measurement of flank wear using the 2-D profile of the tool nose region or the roughness profile of the workpiece has also not been attempted in the past. In this work, the nose radius wear of cutting tools and roughness profile of turned parts in a lathe operation were measured using the machine vision method. The flank wear width VBC in the nose area was determined from the nose radius wear using the tool setup and machining geometry. The nose radius wear was also determined from the roughness profile of the workpiece and used in calculating the flank wear width. Comparison between the maximum flank wear width VBCmax determined from the roughness profile and that obtained using a toolmaker’s microscope showed a mean deviation of 5.5%. This result indicates that flank wear can be determined fairly accurately from the workpiece roughness profile if the tool and machining geometry are known.  相似文献   

15.
In this paper, an attempt is made to evaluate the self-propelled rotary carbide tool performance during machining hardened steel. Although several models were developed and used to evaluate the tool wear in conventional tools, there were no attempts in open literature for modeling the progress of tool wear when using the self-propelled rotary tools. Flank wear model for self-propelled rotary cutting tools is developed based on the work-tool geometric interaction and the empirical function. A set of cutting tests were carried out on the AISI 4340 steel with hardness of 54–56 HRC under different cutting speeds and feeds. The progress of tool wear was recorded under different interval of time. A genetic algorithm was developed to identify the constants in the proposed model. The comparison of measured and predicted flank wear showed that the developed model is capable of predicting the rate of rotary tool flank wear progression.  相似文献   

16.
ABSTRACT

A prediction model of cutting force for milling multidirectional laminate of carbon fiber reinforced polymer (CFRP) composites was developed in this article by using an analytical approach. In the predictive model, an equivalent uniform chip thickness was used in the case of orthogonal plane cutting, and the average specific cutting energy was taken as an empirical function of equivalent chip thickness and fiber orientation angle. The parameters in the model were determined by the experimental data. Then, the analytical model of cutting force prediction was validated by the experimental data of multidirectional CFRP laminates, which shows the good reliability of the model established. Furthermore, the cutting force component of flank contact force was correlated with the surface roughness of workpiece and the flank wear of tool in milling UD-CFRP composites. It was found that surface quality as well as flank wear has a co-incident varying trend with the flank contact force, as confirmed by the observations of the machined surfaces and tool wear at different fiber orientations. So, it can be known that low flank contact force be required to reduce surface damage and flank wear.  相似文献   

17.
甄恒洲 《工具技术》2009,43(3):65-68
在试验研究基础上进行了有后刀面磨损的正交切削模型分析。经过正交切削试验及理论分析,发现后刀面磨损无论是定性上还是定量上都不影响刀具基本切削或剪切过程,即不改变剪切角和摩擦角,但是在磨损区的摩擦力及整个切削力都会增加。充分利用剪切区分析理论,确定了剪切区的切削力、后刀面磨擦力和后刀面磨损量的对应关系,从而建立了在后刀面磨损情况下的切削力模型。  相似文献   

18.
High speed steel tool flank wear during taper turning of low carbon steels was investigated. The effects of spindle speed, feed rate and taper angle on flank wear are reported. To determine the interaction effects of different parameters on flank wear, experiments were also conducted on the basis of the experimental design. A mathematical model evolved by response surface methodology is proposed. Its adequacy was tested by analysis of variance and its accuracy was tested against experimental data.  相似文献   

19.
Abstract

The wear of tool blades for cost-effective scrap tire shredding is investigated. Rotary disk cutters are widely used for cutting scrap tires into small pieces. The hard, wear-resistant tool blades mounted on the periphery of disk cutters maintain a narrow gap between blades and generate the cutting action. The kinematics of the relative motion of two adjacent disk cutters is derived to model the overlap region on blades during cutting. The model predictions match well with the actual shapes of the worn regions on used tool blades. The wear of tool blades made of AISI D2 and CRU-WEAR (CW) tool steels for scrap tire shredding is evaluated. A coordinate measurement machine was used to measure the tool wear. The wear on the blade surface is not uniform. Regions with high wear rate are explained using the kinematics analysis. The CW blades show a lower wear rate, about half of that of D2 blades, and a potential choice for cost savings.  相似文献   

20.
For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号