首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fatigue performance of Reinforced Concrete (RC) beams strengthened using NSM CFRP rods was examined in this study. The testing matrix consisted of one un-strengthened beam and four beams strengthened using NSM CFRP rods prestressed to effective strain values of 0, 3260, 6899, and 9177 μ representing 0%, 20.4%, 43.1%, and 57.4% of the CFRP rod ultimate tensile strain, 1.6%. All beams were tested in four-point bending under fatigue conditions representing in-service loading for 3 million cycles at a frequency of 2 Hz. Upper and lower load limits were chosen to induce a stress range of 125 MPa in the tension steel during the first cycle. The fatigue results were compared with experimental test results of identical beams strengthened using prestressed NSM CFRP strips tested under identical fatigue conditions found elsewhere in literature. Test results showed that all strengthened beams experienced deflection increase lower than that of the un-strengthened beam which indicates the efficiency of the strengthening process in reducing the damage accumulation. Also, the percentage deflection increase as well as the stiffness degradation after 3 million cycles are almost the same for all the strengthened beams which indicates that damage accumulation is independent from the prestress level. The groove dimensionality, rather than the CFRP geometry, has a detrimental effect on the bond behavior.  相似文献   

2.
Concrete structures retrofitted with fibre reinforced plastic (FRP) applications have become widespread in the last decade due to the economic benefit from it. This paper presents a finite element analysis which is validated against laboratory tests of eight beams. All beams had the same rectangular cross-section geometry and were loaded under four point bending, but differed in the length of the carbon fibre reinforced plastic (CFRP) plate. The commercial numerical analysis tool Abaqus was used, and different material models were evaluated with respect to their ability to describe the behaviour of the beams. Linear elastic isotropic and orthotropic models were used for the CFRP and a perfect bond model and a cohesive bond model was used for the concrete–CFRP interface. A plastic damage model was used for the concrete. The analyses results show good agreement with the experimental data regarding load–displacement response, crack pattern and debonding failure mode when the cohesive bond model is used. The perfect bond model failed to capture the softening behaviour of the beams. There is no significant difference between the elastic isotropic and orthotropic models for the CFRP.  相似文献   

3.
通过5根嵌入不同张拉控制应力的碳纤维增强塑料预应力混凝土棱柱体(CFRP-PCPs)复合筋加固钢筋混凝土梁受弯试验,对比分析试验梁的裂缝分布与发展,得到最大裂缝宽度与平均裂缝宽度在静力荷载作用下的变化特性。结果表明: 嵌入CFRP-PCPs复合筋能有效的减少被加固钢筋混凝土梁的裂缝宽度和高度。在试验基础上,根据国家现行混凝土规范,对平均裂缝间距和最大裂缝宽度计算公式进行参数修正,建立了CFRP-PCPs复合筋嵌入加固钢筋混凝土梁最大裂缝宽度计算公式,计算值与试验值吻合较好。  相似文献   

4.
This paper presents a theoretical model to simulate the behaviour of RC beams strengthened with multilayered CFRP matrix allowing for inter-layer slip. An element of the composite beam is assumed to be subjected to a system of forces that satisfy equilibrium and compatibility of deformations. The inter-layer slip is allowed for by relating the differential strain at the interfaces between the CFRP layers and the concrete to the longitudinal shear flow at the corresponding interface through the shear stiffness of the adhesive layer. The basic differential equations are derived in terms of displacement variables and solved numerically using finite differences. The results of the numerical simulation included slip values along the interfaces, maximum slip values, stresses and strains and deflections. The results compare reasonably well with experimental findings.  相似文献   

5.
Amongst various methods developed for strengthening and rehabilitation of reinforced concrete (RC) beams, external bonding of fibre reinforced plastic (FRP) strips to the beam has been widely accepted as an effective and convenient method. The experimental research on FRP strengthened RC beams has shown five most common modes, including (i) rupture of FRP strips; (ii) compression failure after yielding of steel; (iii) compression failure before yielding of steel; (iv) delamination of FRP strips due to crack; and (v) concrete cover separation. In this paper, a failure diagram is established to show the relationship and the transfer tendency among different failure modes for RC beams strengthened with FRP strips, and how failure modes change with FRP thickness and the distance from the end of FRP strips to the support. The idea behind the failure diagram is that the failure mode associated with the lowest strain in FRP or concrete by comparison is mostly likely to occur. The predictions based on the present failure diagram are compared to 33 experimental data from the literature and good agreement on failure mode and ultimate load has been obtained. Some discussion and recommendation for practical design are given.  相似文献   

6.
This paper reports experimental studies of reinforced concrete (RC) beams retrofitted with new hybrid fiber reinforced polymer (FRP) system consisting carbon FRP (CFRP) and glass FRP (GFRP). The objective of this study is to examine effect of hybrid FRPs on structural behavior of retrofitted RC beams and to investigate if different sequences of CFRP and GFRP sheets of the hybrid FRPs have influences on improvement of strengthening RC beams. Toward that goal, 14 RC beams are fabricated and retrofitted with hybrid FRPs having different combinations of CFRP and GFRP sheets. The beams are loaded with different magnitudes prior to retrofitting in order to investigate the effect of initial loading on the flexural behavior of the retrofitted beam. The main test variables are sequences of attaching hybrid FRP layers and magnitudes of preloads. Under loaded condition, beams are retrofitted with two or three layers of hybrid FRPs, then the load increases until the beams reach failure. Test results conclude that strengthening effects of hybrid FRPs on ductility and stiffness of RC beams depend on orders of FRP layers.  相似文献   

7.
A reinforced concrete beam retrofitted with fibre reinforced polymer composites (FRP) to enhance its flexural capacity can experience several failure modes, namely flexural failure, end debond and midspan debond. The mechanism of those failures and available prediction models are first identified in this paper. The models are then assessed with an up to date database of beams reported in literature together with beams tested by the authors. The study verifies that beam theory can predict flexural failure well. The credibility of several methods to predict end debond and mid-span debond is also proved.  相似文献   

8.
A fatigue crack propagation equation of reinforced concrete (RC) beams strengthened with a new type carbon fiber reinforced polymer was proposed in this paper on the basis of experimental and numerical methods. Fatigue crack propagation tests were performed to obtain the crack propagation rate of the strengthened RC beams. Digital image correlation method was used to capture the fatigue crack pattern. Finite element model of RC beam strengthened with carbon fiber reinforced polymer was established to determinate J‐integral of a main crack considering material nonlinearities and degradation of material properties under cyclic loading. Paris law with a parameter of J‐integral was developed on the basis of the fatigue tests and finite element analysis. This law was preliminarily verified, which can be applied for prediction of fatigue lives of the strengthened RC beams.  相似文献   

9.
为解决纯粘贴U形纤维增强聚合物基复合材料(FRP)加固钢筋混凝土梁中FRP端部容易发生剥离破坏等问题,自主研发了对纤维布条带端部进行自锁锚固的方法和锚板,提出了端锚与粘贴并用的混锚U形条带抗剪加固方法。通过2根未加固梁、1根纯粘贴和2根混锚U形碳纤维增强聚合物基复合材料(CFRP)带抗剪加固梁的对比试验,证实了混锚抗剪加固的有效性:混锚能够对纤维带端部进行可靠锚固,阻止端部剥离破坏的发生,实现纤维拉断破坏,大幅度提高材料强度利用率。混锚加固在抑制混凝土梁斜裂缝开展、延缓箍筋屈服、提高箍筋和CFRP的极限应变以及提高抗剪承载力等多个方面的表现均明显优于纯粘贴加固。  相似文献   

10.
制备了4 根炭纤维复合材料(CFRP) 加固钢筋混凝土(RC) 实验梁, 并在梁内钢筋、混凝土及加固CFRP中预置了布拉格光栅光纤传感器(FBG) 和电阻应变片两种传感器。根据钢筋混凝土理论和ANSYS 有限元软件编制了实验梁受弯荷载效应模拟计算程序。实验表明, 实验梁在受弯承载过程中, 布拉格光栅光纤传感器与传统应变片有完全一致的线性关系; 模拟计算出的实验梁受拉钢筋、压区混凝土应变值及挠度与荷载的关系与CFRP 中FBG的实测值吻合较好。由于对既成RC 结构不能在内部装置传感器(会破坏结构降低抗力) , 采用智能CFRP 加固RC 结构可实现加固和实时健康测评双重功能。   相似文献   

11.
12.
Fatigue performance of reinforced concrete (RC) components strengthened with fibre reinforced polymer (FRP) is largely improved. However, temperature changes of service environment have a great effect on the fatigue behaviour of RC components strengthened with FRP. Concerning about temperature variations in subtropical areas such as South China, this paper analyses the fatigue behaviour of RC beams strengthened with carbon fibre laminate (CFL) from experimental studies and theoretical analysis under four different temperatures (5 °C, 20 °C, 50 °C, 80 °C) and five different stress levels (0.60, 0.66, 0.72, 0.78, 0.84). The paper discusses temperature fatigue behaviour of RC beams strengthened with CFL under cyclic bending loads in different service environments, and proposes a calculation formula of fatigue lives of RC beams strengthened with CFL under environmental temperatures and external forces coupling. Experimental results show that the formula not only effectively predicts the fatigue lives of the RC beams strengthened with CFL under environmental temperatures and bending loads coupling but also estimates the fatigue limits.  相似文献   

13.
The purpose of this study was to investigate experimentally the seismic performance and hysteretic energy capacity of strengthened reinforced concrete (RC) frames using carbon fiber reinforced polymer (CFRP) sheets under low-cyclic lateral loading. Two test specimens were constructed and tested under low-cyclic lateral loading. Two 1/3 scaled one-bay and one-storey RC frames specimens were constructed to simulate a two-storey industrial workshop. One specimen was reinforced by CFRP at the ends of beams, columns and at the joints; the other specimen was not reinforced and was used for comparison. This experimental study mainly investigated the effects of CFRP sheets on specimen seismic behavior. The information about the crack development, the damage characteristics, the hysteretic curves of the steel bar and CFRP sheets and the skeleton curves of frame were presented. In addition, the maximum crack width and the ultimate bearing capacity were measured. Test results indicate that the CFRP sheets reinforced frame shows a good hysteretic energy capacity and a higher ductility, which indicates that the CFRP sheets reinforced frame has a better seismic behavior. The results provide an important insight of the role of CFRP sheets in improving the earthquake resistance of frame buildings.  相似文献   

14.
Considering significant influence of servicing environments and vehicle random loads on fatigue performance of main load‐bearing members of bridges, in this paper, fatigue performance of reinforced concrete bridge structures strengthened with carbon fibre–reinforced polymer under coupling action of environmental temperatures and vehicle random loads was studied. A vehicle random loading spectrum for fatigue tests was simulated and compiled. A fatigue testing method with coupling action of random loads and temperatures was proposed, and 3‐point bending fatigue tests of the reinforced concrete beams strengthened with carbon fibre–reinforced polymer under coupling action of temperatures and vehicle random loads were performed. Effects of temperatures and loading form on the fatigue damage mechanism were preliminarily discussed. A modified Palmgren‐Miner rule and semiempirical fatigue equations were proposed and proved effective.  相似文献   

15.
钢筋混凝土梁冲击试验数值模拟研究   总被引:1,自引:1,他引:0  
姜华  贺拴海  王君杰 《振动与冲击》2012,31(15):140-145
摘要: 采用弹塑性损伤帽盖模型对筋混凝土梁冲击试验进行了数值模拟,数值模拟得到的碰撞力、梁体跨中挠度以及梁体破坏状况与实验情况吻合较好。在此基础上讨论了混凝土材料应变软化段、描述塑性体积的帽盖面、强度准则子午线形状、偏平面形状以及钢筋混凝土结构建模方式对冲击数值模拟的影响。  相似文献   

16.
为了抵抗粘贴碳纤维增强聚合物基复合材料(CFRP)加固钢筋混凝土结构中常见的剥离破坏,发明了将CFRP布端部以特定方式绕平行双杆实现自锁的方法。鉴于窄梁截面宽度有限,提出将CFRP布贴梁受拉底面布置后,用安装在梁侧面的双L形端锚装置固定双杆,形成侧锚底贴加固方案。完成了5根混凝土强度较低的矩形截面梁四点弯曲试验,其中4根采用上述锚固方式抗弯加固,检验了锚固效果,考察了CFRP布宽度及其沿全长与梁底面是否粘结对加固效果的影响。试验结果表明,采用本文方法进行加固后,端部剥离得以避免,中部剥离即使发生,或在无粘结加固梁受力后期,CFRP布仍能承担较大拉力,因此,极限荷载较对比梁有明显提高。比较而言,CFRP布与梁底有粘结时加固效果更好,CFRP布宽度加大也对提高承载力有益。  相似文献   

17.
The aim of the experimental programme developed in this work was to investigate the possibility of using Carbon Fibre-Reinforced Polymer (CFRP) rods to strengthen concrete structural members with the Near Surface Mounted reinforcement (NSM) technique. The global behaviour of reinforced cantilever concrete beams strengthened by the NSM technique and subjected to flexure is investigated. The specific problem of cantilever beams (strengthening outward pressure) was studied. The global behaviour of the cantilever concrete beams was compared with that of beams subjected to flexure with four points load test. A carbon–epoxy pultruded FRP (CFRP) rod of 6 mm in diameter was used. The study was carried out up to the failure load, and focused on the modifications in mechanical behaviour, cracking and failure mode of the beams. An analytical and Finite Element models to predict the peeling-off failure mode were compared.  相似文献   

18.
The rehabilitation of existing Reinforced Concrete (RC) structures constitutes one of the leading challenges in civil engineering. The crucial reasons for the strengthening of RC structures comprise frequent increases in design loads, engineering errors in design or workmanship issues during construction, changes in code and functional requirements. This paper introduces an innovative approach comprising the Side-Near-Surface-Mounted (SNSM) technique, which incorporates Carbon Fiber Reinforced Polymer (CFRP) and steel bars as strengthening reinforcement. Experimental and analytical investigation was adopted to explore flexural strengthening of RC beams with them. Analytical models are presented to predict the ultimate load, crack spacing and deflection. Four-point bending tests were performed up to failure on the rectangular RC beams strengthened with different ratios of SNSM reinforcement. The failure characteristics, yield and ultimate capacities, deflection, cracking behavior, ductility and energy absorption capacities were evaluated. The SNSM technique significantly enhanced the flexural behavior of the beams. The yield and ultimate load carrying capacities of the beams increased by a factor of 2 and 2.38 times, respectively. The cracking loads improved more notably (3.17 times). Predicted results from the analytical models showed good agreement with the experimental results, which confirmed proficient implementation of the proposed SNSM technique.  相似文献   

19.
This paper deals with strengthening, upgrading, and rehabilitation of existing reinforced concrete structures using externally bonded composite materials. Five strengthened, retrofitted, or rehabilitated reinforced concrete beams are experimentally and analytically investigated. Emphasis in placed on the stress concentration that arises near the edge of the fiber reinforced plastic strip, the failure modes triggered by these edge effects, and the means for the prevention of such modes of failure. Three beams are tested with various edge configurations that include wrapping the edge region with vertical composite straps and special forms of the adhesive layer at its edge. The last two beams are preloaded up to failure before strengthening and the ability to rehabilitate members that endured progressive or even total damage is examined. The results reveal a significant improvement in the serviceability and strength of the tested beams and demonstrate that the method is suitable for the rehabilitation of severely damaged structural members. They also reveal the efficiency of the various edge designs and their ability to control the characteristic brittle failure modes. The analytical results are obtained through the Closed-Form High-Order model and are in good agreement with the experiment ones. The analytical and experimental results are also used for a preliminary quantitative evaluation of a fracture mechanics based failure criterion for the strengthened beam.  相似文献   

20.
This paper describes the experimental tests made on RC beams retrofitted by unconventionally arranged CFRP strips and on a reference, not retrofitted one. Diagonal CFRP strips were applied on the lateral faces of the specimens and connected to the longitudinal ones in order to improve the anchorage length of the latters. The experimental outcomes prove that this CFRP strips distribution can improve the load carrying capacity of the retrofitted beams, provided that the diagonal strips are long enough and that the longitudinal reinforcement is arranged along the whole beam. Comparison with the predictions based on CNR-DT 200 and ACI 440.2R-02 guidelines is finally displayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号